Detector Characterization on KISTI/GSDC for KAGRA

Kim,Young-Min (UNIST) on behalf of KGWG-DetChar

Laser Interferometer

Role of Detector Characterization

Interferometer is so complex!

Detector Characterization What GPS time segment to analyze?

When was the ifo operating?

How is the data quality? :

Is this data segment noisy or not? Glitchy or not? Line noise?

If noisy or glitchy, what's the source? How is it coupled to h(t)?

What channel to see to know the status?

If noisy or glitchy, what's the source? How is it coupled to h(t)?

If noisy or glitchy, what's the source? How is it coupled to h(t)?

2/14/19

JGW-G1909828

Data Analysis

taken from Kokeyama's slides

Main task of the PEM subsystem

After finishing the installation tasks, We will start the commissioning phase

One of the important task is **Possible upgrade of VT**

- V: Volume, try to achieve the good sensitivity
 - Search the origin of noise which makes the noise floor dirty and makes the glitch
 - Line noise characterization, time variance of noise floor,
 glitch noisy period search, veto, …
- T: Time, try to achieve the stable operation
 - Reducing the origin of unlock, quick recovery
 - Safety interferometer control syste

taken from Yokozawa's slides

The impact of Data Quality Vetoes

What we need for the joint Observation

- I. On-line Data Quality
 - Online DQ flags
 - online DQ pipeline (e.g. iDQ) glitch identification and responsible channels
- 2. Off-line Data Quality
 - deep investigation on glitches, spectral lines, noise sources, etc.
 - improve search background with full DQ
- 3. Channel Information
 - find out 'unsafe' channels
 - 'safe' channels to be used for online / offline analysis and vetoes

KGWG DetChar Activities

- I. Off-site work
 - glitch investigation with LIGO-Virgo DQ tools
 - Machine learning application to glitch identification
 - (off-line) iDQ operation
- 2. On-site work
 - short-/mid-term visits to the KAGRA site
 - installation of DQ tools, or development of new tools
 - DQ shifts for the operation
- 3. channel safety study
 - find 'unsafe' / 'safe' channels

Works in KISTI/GSDC

- I. Off-site work
 - LIGO/Virgo tools (gwpy, omicron, hveto, bruco), CAGMon, etaGen, etc.
- 2. Channel Safety Study
 - using Hardware Injections : Photon Calibrator (PCal) Injection
 - Figure out which channels respond to the injections
- 3. Correlation study
 - CAGMon, ...
- 4. New Event Trigger Generation method : etaGen
- 5. Machine Learning Application to Glitch Identification

DQ tools in KISTI/GSDC

- I. Transient Signal Identification
 - Omicron
 - etaGen
- 2. veto algorithms
 - hveto
 - iDQ : No low-latent operation for KAGRA due to data transfer issue
- 3. Correlation and Coherence tools
 - CAGMon
 - BruCo
- 4. GWPy: a python package for GWDA

Omicron Trigger

I. Omicron algorithm (http://virgo.in2p3.fr/GWOLLUM/v2r1/index.html?Friends/omicron.html)

- Burst-type search based on Q-transform (CQG 21, S1809 (2004))
- 2. Installation on KISTI/GSDC cluster

etaGen

- EtaGen is an event trigger generator based on Hilbert-Huang Transform (HHT)
- HHT = Empirical Mode
 Decomposition (EMD) +
 Hilbert Spectral Analysis (HSA)
 (for a review, see Huang et al.,
 Rev. Geophys. 2008)
- To reduce computing cost, we are using weighted sliding EMD (wSEMD) instead of Ensemble EMD (EEMD)

wSEMD Concept Image

2

etaGen : how it works

кихош rerugia, reb. 14-15, 2019

hVeto

n : the number of coincidencesT_win : full width of coincidence time windowT_tot : a given total analysis time

Counting Experiment

Example: ITMX pitch

Example: ITMX pitch

Channel Safety Study with HW injections

- I. The safety of a veto is important for veto criteria not to remove accidentally a true gravitational wave signal.
 - unsafe channels : Auxiliary channels with non-negligible couplings from GW channel. A corresponding response to HW injections is greater than expected by chance.
 - **safe** channels : it can be used as a veto or to study glitches in h(t).

How to find unsafe channels ?

- I. Heuristic Methods
 - Understanding detector itself.
- 2. Statistical Methods
 - hVeto, UPV, OVL, iDQ, etc...
- 3. Correlation methods
 - Peason's correlaiton, MIC, CAGMon, etc
 - Coherence (BruCo)

Safety check with HW inj.

- A response of a auxiliary channel to HW injections can be analyzed by using Omicron triggers.
 - Trigger generation rate is larger than KW triggers.
 - Efficiency / dead-time of a safe channel can be estimated.
 - We don't exactly know auxiliary channels' responses to h(t) so that we will have to check coincidences of triggers channel by channel.
- 2. Omicron Scans
 - a time-frequency map
 - It will be used to compare the morphologies between GW channel and an auxiliary channel which is suspicious as unsafe.

Preliminary study of CSS

- I. Conducted by Pil-Jong Jung (KGWG —> ICRR)
- 2. <u>http://gwwiki.icrr.u-tokyo.ac.jp/JGWwiki/KAGRA/Subgroups/DET/</u> <u>CSS</u>
- 3. <u>http://gwwiki.icrr.u-tokyo.ac.jp/JGWwiki/KAGRA/Subgroups/DET/</u> <u>CSS/hvetoslide</u>

K1 Hveto round 1

iDQ - online DQ pipeline

- I. Developed by Reed Essick and his colleagues
 - <u>https://docs.ligo.org/reed.essick/iDQ/index.html</u>
- 2. A (near) real-time statistical data quality pipeline for glitch detection
- 3. Output: a probability that there is a glitch in h(t) as a function of time
- 4. 2-class classification
 - I for glitch, 0 for clean
 - train : make mapping
 - realtime : evaluate a rank (0~I)
 - calibration : conditioned probability distribution
- 5. responsible channels to the identified glitch

issue on running iDQ

- I. Computing resource
 - Number of Channels : ~ 1000
 - train: ~1.78 GB/day (37 MB per 1800s) => 454 GB/yr (duty cycle 70%)
 - realtime: ~2.33 GB/day (2.7 GB per 10^5s) => 596 GB/yr
 - KAGRA
 - I. number of channels : $O(10^2)$
- 2. Latency of Data transfer
 - off-line iDQ is currently available.

BruCo (Brute-force Coherence)

KIW5@ Perugia, Feb. 14-15, 2019

BruCo Comparisons

I. run "filter4_bruco.py"

Top 40 coherences at 0.0 =< f =< 4096.0 Hz : coh.=(0.00996898170809,1.0]

Frequency [Hz]	op channels										
0.00	SUS-ETMY_M0 _DAMP_V_IN1 _DQ (0.12) ref.	OMC-LSC_SERVO _OUT_DQ (0.12) ref.	SUS-OMC_M1 _MASTER_OUT _RT_DO (0.11) ref.	ISI-BS_STI _BLND_Y_CPS _CUR_INI_DQ (0.11) ref.	SUS-ETMY_M0 _OSEMINF_RT _OUT_DQ (0.10) ref.	ISI-BS_ST2 _GS13INF_H1 _IN1_DQ (0.10) ref.	SUS-OMC_M1 _FASTIMON_RT _OUT_DQ (0.10) ref.	ISI-HAM6_CDMON _H2_L_IN1 _DQ (0.09) ref.	IMC-L_IN1_DQ (0.09) ref.	MC-F_IN1_DQ (0.09) <u>ref.</u>	<u>BI-HAM6_CD</u> _ <u>H2_V_IN1</u> _ <u>DQ</u> (0.09) <u>ref.</u>
0.25	LSC-POPAIR B_RF18_Q_ERR _DQ (0.15) ref.	LSC-POPAIR B_RF18_Q_ERR _256_DQ (0.15) ref.	PSL-ISS_THIRDLOOP _SERVO _OUT_DQ (0.15) ref.	PSL-ISS_ <u>SECONDLOOP</u> _ <u>ERR1</u> _ <u>DQ</u> (0.15) <u>ref.</u>	PSL-ISS_SECONDLOOP _OUTPUT _DQ (0.14) ref.	SUS-ITMY_M0 _MASTER_OUT _F3_DQ (0.14) ref.	ALS-C_COMM _A_LF_OUT_DQ (0.14) ref.	SUS-BS_M3_OPLEV _PTT_OUT _DQ (0.13) <u>ref.</u>	PSL-ISS_SECONDLOOP _RIN _OUTER_OUT _DQ (0.13) ref.	ASC-REFL_A _RF9_Q_SUM _OUT_DQ (0.13) ref.	PSL-ISS_SECO _ <u>RIN</u> _INNER_OUT _DQ (0.13) ref.
0.50	IMC-IM4_TRANS _SUM_INI _DQ (0.22) ref.	IMC-IM4_TRANS _SUM_OUT _DQ (0.22) ref.	PSL-ISS_SECONDLOOP _PD4 _OUT_DQ (0.22) ref.	PSL-ISS_SECONDLOOP _PD7 _OUT_DQ (0.22) ref.	PSL-ISS_ <u>SECONDLOOP</u> _ <u>PD1</u> _ <u>OUT_DQ</u> (0.22) <u>ref.</u>	SUS-ETMY_L2 _FASTIMON _UL_OUT_DQ (0.21) mf.	PSL-ISS_SECONDLOOP _RIN _CTRL_OUT _DQ (0.21) ref.	DIC-PWR_EOM OUT_DQ (0.21) ref.	MC-PWR_IN _OUT_DQ (0.21) mf.	SUS-ETMY_R0 _FASTIMON _F2_OUT_DQ (0.20) ref.	ASC-OMC_B_] _OUT_DQ (0.19) <u>ref.</u>
0.75	ASC-Y_TR_B _PTT_OUT_DQ (0.09) ref.	SUS-ETMX_L2 _FASTIMON _UL_OUT_DQ (0.09) ref.	SUS-ETMX_L2 _FASTIMON _LB_OUT_DQ (0.09) ref.	ASC-DSOFT_Y _OUT_DQ (0.08) ref.	ASC-DSOFT_Y _ <u>SM_DQ</u> (0.08) <u>ref.</u>	SUS-OMC_M1 _FASTIMON_LF _OUT_DQ (0.08) ref.	SUS-OMC_M1 _MASTER_OUT _LF_DO (0.08) ref.	OMC-PZT2_MON _AC_OUT_DQ (0.08) ref.	SUS-ITMY_L3 _ISCINF_Y _IN1_DQ (0.08) ref.	ASC-REFL_B _RF45_L_PIT _OUT_DQ (0.07) ref.	SUS-ETMX_RC OSEMINF_F1 OUT_DQ (0.07) ref.
1.00	ASC-CHARD_P _OUT_DQ (0.21) ref.	ASC-CHARD_P _SM_DQ (0.21) ref.	SUS-ITMY_L2 _FASTIMON _LL_OUT_DQ (0.21) ref.	LSC-SRCL_CTRL _256_DQ (0.21) ref.	SUS-SRM_M3 _ISCINF_L_IN1 _DQ (0.21) ref.	L <u>SC-SRCL_OUT</u> _DQ (0.21) <u>ref.</u>	CAL-CS_SRCL -DQ (0.20) <u>ref.</u>	SUS-ITMY_L2 _MASTER_OUT _LL_DO (0.20) ref.	ASC-CHARD_P _IN1_DQ (0.20) ref.	SUS-ETMX_L2 _FASTIMON _LR_OUT_DQ (0.19) ref.	SUS-ITMY_L2 _FASTIMON _LR_OUT_DQ (0.19) ref.
1.25	SUS-BS_M2_OSEMINF _UL_ _OUT_DQ (0.28) ref.	SUS-ITMY_L2 _FASTIMON _LL_OUT_DQ (0.21) mf.	SUS-ITMY_L2 _MASTER_OUT _LL_DQ (0.21) mf.	SUS-ITMX_M0 _OSEMINF_F1 _OUT_DQ (0.21) ref.	SUS-ETMY_M0 _FASTIMON _F2_OUT_DQ (0.20) ref_	SUS-SRM_MI _MASTER_OUT _LF_DQ (0.20) mf.	SUS-SRM_M2 _WTT_P_DQ (0.19) ref.				
1.50	sus-etmy_L2 _ <u>wit_Y_DQ</u> (0.34) <u>mf</u>	SUS-ITMY_L2 <u>FASTIMON</u> <u>UL_OUT_DQ</u> (0.31) <u>ref.</u>	ASC-MICH_Y _ <u>SM_DQ</u> (0.31) <u>ref.</u>	ASC-MICH_Y OUT_DQ (0.31) mf_	SUS-BS_M3_ISCINF Y_INI _DQ (0.31) <u>ref.</u>	SUS-ITMY_L2 NOISEMON UL_OUT_DQ (0.31) ref.	<u>SUS-BS_M2_WTT</u> _ <u>L_DQ</u> (0.31) <u>rsf.</u>	SUS-BS_M2_FASTIMON _UL_ _OUT_DQ (0.31) ref.	SUS-BS_M2_MASTER OUT _LL_DQ (0.30) ref.	PEM-CS_RADIO _LVEA_NARROWHAND _2 _DO (0.30) ref.	
1.75	ICM CS_RADIO _LVEA_NARROWBAND _2 _DQ (0.73) <u>pd</u>	SUS OM2_MI _VOLTMON_LR _DQ (0.73) mL	SUS SRM_M3 _NOISEMON_LL _OLT_DQ (0.73) <u>inl</u>						_		
2.00	SUS-ETMY_L2 _ <u>FASTIMON</u> _LR_OUT_DQ (0.42) <u>ref.</u>	SUS-OMD_MI OSEMINF_UL OUT_DQ (0.41) mf_	SUS-ETMY_L1 OSEMINF_LR OUT_DQ (0.41) mf_	SUS-BS_M2_MASTER _OUT _UL_DQ (0.40) mf_	PEM-CS_RADIO _LVEA_NARROWBAND _2 _DQ (0.40) ref.	SUS-FITMY_L1 _OSEMINF_LL _OUT_DQ (0.40) mf_	ASC-SRC1_Y _ <u>SM_DQ</u> (0.39) <u>ref.</u>	ASC-SRC1_Y _OLT_DQ (0.39) <u>ref.</u>			
	SUS-ITMX L2	SUS-ITMX L3			SUS-ITMY L2	SUS-ITMY L3	SUS-ITMY L2	SUS-ITMY L1	SUS-ITMY M0	SUS-ETMX L2	SUS-ITMY MO

Correlations between Auxiliary Channels

- To find a systematic way of the correlation between various auxiliary channels in GW detector
 - Helps us to fix the correlated channels that produces abnormal glitches
 - Important to monitor the dynamical variation of the detector for removing glitches

Pearson's correlation coefficient (PCC):

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

 a measure of linear correlation between two random variables

Correlations between Auxiliary Channels

- To find a systematic way of computing the correlation between various auxiliary channels in GW detector
 Helps us to fix the correlated channels that
 - produces abnormal glitches
 - Important to monitor the dynamical variation of the detector for removing glitches
- Mutual Information Coefficient (MIC):

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log\left(\frac{p(x,y)}{p(x)p(y)}\right)$$

 a measure of non-linear correlation between two random variables

CAGMon

- I. Developed by John J. Oh (NIMS)
 - <u>https://git.ligo.org/john.oh/CAGMon</u>

MLAs for Glitch Identification

MLAs for Glitch Identification

MLA application to DetChar

- I. Ordered Veto List (OVL) + 3 Machine Learning Algorithms
 - application to hundreds of channels among 200,000 auxiliary channels

==>iDQ + MLAs

27

Summary and Future plans

- I. LV DQ tools are adopted for KAGRA DQ investingation
 - etaGen, CAGMon were devolved by KGWG
- 2. Channel Safety Study was partly done and continues
- 3. For the joint observation with LIGO and Virgo
 - visit to the site
 - online investigation on KAGRA DQ
 - study on recent lock segments of KAGRA commissioning run
 - running off-line iDQ and optimization for KAGRA
 - spectral line tools
 - deep investigation on KAGRA DQ