Detector Characterization on KISTI/GSDC for KAGRA

Kim, Young-Min (UNIST)
on behalf of KGWG-DetChar
Laser Interferometer

GW channel

Detected Characterization

non-gaussian noise artifacts, “glitch”

Signal Search

Example Inspiral Gravitational Wave
Role of Detector Characterization

Interferometer is so complex!

Detector Characterization

- What GPS time segment to analyze?
- When was the ifo operating?
- How is the data quality?: Is this data segment noisy or not? Glitchy or not? Line noise?
- If noisy or glitchy, what’s the source? How is it coupled to h(t)?
- What channel to see to know the status?

Hardware

- 2/14/19

Data Analysis

- JGW-G1909828

taken from Kokeyama’s slides
Main task of the PEM subsystem

After finishing the installation tasks, we will start the commissioning phase.

One of the important tasks is:

Possible upgrade of VT

- **V**: Volume, try to achieve the good sensitivity
 - Search the origin of noise which makes the noise floor dirty and makes the glitch
 - Line noise characterization, time variance of noise floor, glitch noisy period search, veto, ...

- **T**: Time, try to achieve the stable operation
 - Reducing the origin of unlock, quick recovery
 - Safety interferometer control system
The impact of Data Quality Vetoes

The false alarm rate of GW151226 improves by a factor of 567, from 1 in 320 years to 1 in 183000 years, with interferometer data quality information!

If DQ vetoes are not applied, GW151226 is no longer louder than the entire background distribution.

LIGO-Virgo Collaboration, Class. Quantum Grav. 35 (2018) 065010
What we need for the joint Observation

1. On-line Data Quality
 - Online DQ flags
 - online DQ pipeline (e.g. iDQ) - glitch identification and responsible channels

2. Off-line Data Quality
 - deep investigation on glitches, spectral lines, noise sources, etc.
 - improve search background with full DQ

3. Channel Information
 - find out ‘unsafe’ channels
 - ‘safe’ channels to be used for online / offline analysis and vetoes
KGWG DetChar Activities

1. Off-site work
 - glitch investigation with LIGO-Virgo DQ tools
 - Machine learning application to glitch identification
 - (off-line) iDQ operation

2. On-site work
 - short-/mid-term visits to the KAGRA site
 - installation of DQ tools, or development of new tools
 - DQ shifts for the operation

3. Channel safety study
 - find ‘unsafe’ / ‘safe’ channels
Works in KISTI/GSDC

1. Off-site work
 - LIGO/Virgo tools (gwpy, omicron, hveto, bruco), CAGMon, etaGen, etc.

2. Channel Safety Study
 - using Hardware Injections: Photon Calibrator (PCal) Injection
 - Figure out which channels respond to the injections

3. Correlation study
 - CAGMon, …

4. New Event Trigger Generation method: etaGen

5. Machine Learning Application to Glitch Identification
DQ tools in KISTI/GSDC

1. Transient Signal Identification
 - Omicron
 - etaGen

2. veto algorithms
 - hveto
 - iDQ: No low-latent operation for KAGRA due to data transfer issue

3. Correlation and Coherence tools
 - CAGMon
 - BruCo

4. GWPy: a python package for GWDA
Omicron Trigger

 - Burst-type search based on Q-transform (CQG 21, S1809 (2004))

2. **Installation on KISTI/GSDC cluster**

![Graph showing signal-to-noise ratio (SNR) over time and central frequency.](image)
etaGen

- EtaGen is an event trigger generator based on Hilbert-Huang Transform (HHT)
- HHT = Empirical Mode Decomposition (EMD) + Hilbert Spectral Analysis (HSA) (for a review, see Huang et al., Rev. Geophys. 2008)
- To reduce computing cost, we are using weighted sliding EMD (wSEMD) instead of Ensemble EMD (EEMD)

Edwin J. Son et al., arXiv.1810.07555
etaGen: how it works

- EMD
 - Generate IMFs
 - Sifting

- HSA
 - Hilbert Transform
 - Complexify to get a(t) & f(t)

- Trigger Generation
 - Unclustered
 - Clustering
etaGen : Performance test
hVeto

\[S = -\log_{10} \sum_{k=n}^{\infty} \left[\frac{\mu^k e^{-\mu}}{k!} \right] \]

\[\mu = \frac{N_{\text{main~tot}} N_{\text{aux~tot}} T_{\text{win}}}{T_{\text{tot}}} \]

- \(n \): the number of coincidences
- \(T_{\text{win}} \): full width of coincidence time window
- \(T_{\text{tot}} \): a given total analysis time

ClassQuantGrav.28.235005(2011)
Counting Experiment

\[h(t): \quad N_h = 5 \]

Auxiliary Channel: \(N_n = 6 \)
Coincidences: \(x = 3 \)

Poisson Statistics
Example: ITMX pitch
Example: ITMX pitch
Channel Safety Study with HW injections

1. The safety of a veto is important for veto criteria not to remove accidentally a true gravitational wave signal.

- **unsafe** channels: Auxiliary channels with non-negligible couplings from GW channel. A corresponding response to HW injections is greater than expected by chance.

- **safe** channels: it can be used as a veto or to study glitches in h(t).
How to find unsafe channels?

1. Heuristic Methods
 - Understanding detector itself.

2. Statistical Methods
 - hVeto, UPV, OVL, iDQ, etc…

3. Correlation methods
 - Peason’s correlation, MIC, CAGMon, etc
 - Coherence (BruCo)
Safety check with HW inj.

1. A response of a auxiliary channel to HW injections can be analyzed by using Omicron triggers.
 - Trigger generation rate is larger than KW triggers.
 - Efficiency / dead-time of a safe channel can be estimated.
 - We don’t exactly know auxiliary channels’ responses to $h(t)$ so that we will have to check coincidences of triggers channel by channel.

2. Omicron Scans
 - a time-frequency map
 - It will be used to compare the morphologies between GW channel and an auxiliary channel which is suspicious as unsafe.
Preliminary study of CSS

1. Conducted by Pil-Jong Jung (KGWG —> ICRR)

iDQ - online DQ pipeline

1. Developed by Reed Essick and his colleagues
 - https://docs.ligo.org/reed.essick/iDQ/index.html
2. A (near) real-time statistical data quality pipeline for glitch detection
3. Output: a probability that there is a glitch in h(t) as a function of time
4. 2-class classification
 - 1 for glitch, 0 for clean
 - train : make mapping
 - realtime : evaluate a rank (0~1)
 - calibration : conditioned probability distribution
5. responsible channels to the identified glitch
issue on running iDQ

1. Computing resource
 - Number of Channels: ~1000
 - train: ~1.78 GB/day (37 MB per 1800s) => 454 GB/yr (duty cycle 70%)
 - realtime: ~2.33 GB/day (2.7 GB per 10^5s) => 596 GB/yr

2. Latency of Data transfer
 - off-line iDQ is currently available.
BruCo (Brute-force Coherence)

Time	ASC-CHARD P OUT DO	ASC-CHARD P IN1 DO	ASC-CSOFT P OUT DO	ASC-CSOFT P SM DO	ASC-DC1 P OUT DO	ASC-DC1 P SM DO	SUS-RM2 M1 OSEMFIN UR	SUS-ITMY L3 DSCINF P	ASC-OMC B NSUM OUT DO	ASC-OMC A NSUM OUT DO	ASC-SAS C NSUM OUT DO	ASC-POP A RF45 O ERB 239 DO	ASC-MICH CTRL 239 DO	SUS-BS M2 DSCINF L IN1 DO	SUS-PR2 M2 DSCINF L IN1 DO	CAL-CS M2 CTRL DO		
10.00	(0.57)	(0.57)	(0.37)	(0.37)	(0.37)	(0.37)	(0.37)	(0.37)	(0.37)	(0.37)	(0.37)	(0.37)	(0.37)	(0.37)	(0.37)	(0.37)	(0.37)	(0.37)
10.50	(0.58)	(0.58)	(0.58)	(0.58)	(0.58)	(0.58)	(0.58)	(0.58)	(0.58)	(0.58)	(0.58)	(0.58)	(0.58)	(0.58)	(0.58)	(0.58)	(0.58)	(0.58)
11.00	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)
11.50	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)
12.00	(0.64)	(0.64)	(0.64)	(0.64)	(0.64)	(0.64)	(0.64)	(0.64)	(0.64)	(0.64)	(0.64)	(0.64)	(0.64)	(0.64)	(0.64)	(0.64)	(0.64)	(0.64)
12.50	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)	(0.57)
13.00	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)	(0.59)
13.50	(0.27)	(0.27)	(0.27)	(0.27)	(0.27)	(0.27)	(0.27)	(0.27)	(0.27)	(0.27)	(0.27)	(0.27)	(0.27)	(0.27)	(0.27)	(0.27)	(0.27)	(0.27)
14.00	(0.43)	(0.43)	(0.43)	(0.43)	(0.43)	(0.43)	(0.43)	(0.43)	(0.43)	(0.43)	(0.43)	(0.43)	(0.43)	(0.43)	(0.43)	(0.43)	(0.43)	(0.43)
14.50	(0.15)	(0.15)	(0.15)	(0.15)	(0.15)	(0.15)	(0.15)	(0.15)	(0.15)	(0.15)	(0.15)	(0.15)	(0.15)	(0.15)	(0.15)	(0.15)	(0.15)	(0.15)

Graphs

- **Coherence**
 - X-axis: Frequency [Hz]
 - Y-axis: Coherence
 - Two traces: Target channel and Noise projection.

- **Spectrum**
 - X-axis: Frequency [Hz]
 - Y-axis: Spectrum
BruCo Comparisons

1. run "filter4_bruco.py"

Top 40 coherences at 0.0 <= f <= 4096.0 Hz : coh.=(0.00996898170809,1.0)

<table>
<thead>
<tr>
<th>Frequency [Hz]</th>
<th>Top channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>SUS ETMY M0 DAMP Y IN</td>
</tr>
<tr>
<td>0.25</td>
<td>LSC POPAIR B. RFI3 Q ERR DO (0.15) ref.</td>
</tr>
<tr>
<td>0.50</td>
<td>IMC IM4 TRANS SUM IN</td>
</tr>
<tr>
<td>0.75</td>
<td>ASC Y TR B P</td>
</tr>
<tr>
<td>1.00</td>
<td>ASC CHARD P UV</td>
</tr>
<tr>
<td>1.25</td>
<td>SUS BS M2 OSEMINF UL</td>
</tr>
<tr>
<td>1.50</td>
<td>SUS ETMY L2 WIT Y</td>
</tr>
<tr>
<td>1.75</td>
<td>PEM CS RADIO LVEA NARROWBAND</td>
</tr>
<tr>
<td>2.00</td>
<td>SUS ETMY L2 FASTIMON</td>
</tr>
</tbody>
</table>
Correlations between Auxiliary Channels

- To find a systematic way of the correlation between various auxiliary channels in GW detector
 - Helps us to fix the correlated channels that produces abnormal glitches
 - Important to monitor the dynamical variation of the detector for removing glitches
- Pearson’s correlation coefficient (PCC):

\[r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} \]

- a measure of linear correlation between two random variables
Correlations between Auxiliary Channels

To find a systematic way of computing the correlation between various auxiliary channels in GW detector

- Helps us to fix the correlated channels that produces abnormal glitches
- Important to monitor the dynamical variation of the detector for removing glitches

Mutual Information Coefficient (MIC):

\[I(X; Y) = \sum_{y \in Y} \sum_{x \in X} p(x, y) \log \left(\frac{p(x, y)}{p(x)p(y)} \right) \]

- a measure of non-linear correlation between two random variables
CAGMon

1. Developed by John J. Oh (NIMS)
 - https://git.ligo.org/john.oh/CAGMon
MLAs for Glitch Identification

Random Forest of Bagged Decision Trees

Support Vector Machine

Artificial Neural Network

LIGO-G1200500

Ch.1 Ch.1 ... Ch.n-1 Ch.n

t1 x1 x2 ... xn-1 xn

tm x1 x2 ... xn-1 xn

GW channel
MLAs for Glitch Identification

Random Forest of Bagged Decision Trees
Support Vector Machine
Artificial Neural Network

safe Auxiliary channels ~ 1,000
MLA application to DetChar

1. Ordered Veto List (OVL) + 3 Machine Learning Algorithms

 - application to hundreds of channels among 200,000 auxiliary channels

\[=> iDQ + MLAs \]
Summary and Future plans

1. LV DQ tools are adopted for KAGRA DQ investigation
 - etaGen, CAGMon were devolved by KGWG

2. Channel Safety Study was partly done and continues

3. For the joint observation with LIGO and Virgo
 - visit to the site
 - online investigation on KAGRA DQ
 • study on recent lock segments of KAGRA commissioning run
 - running off-line iDQ and optimization for KAGRA
 - spectral line tools
 - deep investigation on KAGRA DQ