KAGRA's situation

Mar. 2015: iKAGRA run (Simple Michelson Interferometer)

- There was no calibration group.
- Some site people worked on calibration and reconstruction.

May. 2018: bKAGRA phase-1 run (Cryogenic MI)

- Only online h(t) was provided.
- There were no photon calibrator (Pcal).

Now: Commissioning test

- We start to work on reconstructing the displacement of each DOF.
- Pcal installation is ongoing.

Dec. 2019: Join the O3 observation (DRFPMI)

- Two Pcal will be ready.
- Online, low-latency, and offline h(t) will be provided.

CAL activities during previous operation

- We measured the optical gain (C) response by Free-Swinging method. \sim 15% uncertainty in estimated optical gain.
- OLTF (G) was measured by the digital control system.
- Actuator efficiency (A) was estimated by G/C

Our mission on O3

Pcal instrument

- Calibration of the laser power with KAGRA's working standard.
- Monitoring beam positions of Pcal laser.

IFO instrument

- Measurement of the optical response with pcal.
- Independent measurement of the time dependent coefficients of the optical plant (C) and the actuation plant (A)

Software

- Providing low-latency and offline h(t)
 - Correcting time dependent coefficient.
 - Precise h(t) generation with FIR filters
- Providing information of the systematics and uncertainty of the reconstructed strain signal.

pcal installation

JGW-D1807705

KAGRACalibration instruments Gravity Field Calibrator

pcal installation

JGW-D1807705

Both X- and Y-Pcal had been installed in last year.

We started to measure

- the accuracy of the beam position
- optical loss between Tx and Rx modules

h(t) reconstruction scheme

JGW-G1707452

 $\frac{1+G}{AC} = \frac{v_{\text{err}}}{x_{\text{ctrl}}}$ $G = \frac{x_{\text{in}2}}{x_{\text{in}1}}$

We can monitor the gain fluctuation of G. Which is a cause of gain fluctuation, A or C? h(t) reconstruction pipeline (Calibration software)

- Digital control and DAQ systems on KAGRA are the copy of LIGO's systems.
- We also use a LIGO system as a part of data transfer system.

Reconstruction pipeline

Online h(t) on digital control system

- Main user: commissioners
- Filter process: full IIR
- Delay: within 1s

Low-latency h(t) on gstlal-calibraion

- Main user: data analysis
- Filter process: IIR + FIR
- Delay: ~4s

Offline h(t) on gstlal-calibraion

- Main user: data analysis
- Filter process: full FIR
- Delay: in discussion

Online h(t) by real-time model + Low-latency/Offline h(t) by gstlal-calibraion

KAGRA CAL Subway map

KAGRA Subway map ver.0

MCL reconstruction

MCL reconstruction

The time delay in the AOM path, τ_C , can be ignored.

The total delay in the SUS path can be approximated as 6 clocks in 16kHz sampling because $\tau_C + \tau_{AOM} + \tau_{SUS} \ll 61$ us (I hope).

The gstlal-calibration receives the signals before applying time delay.

 $\Delta f'$ is 165us (= $\tau_{\text{IPC}} + \tau_{\text{dAA}} + \tau_{\text{ADC}} + \tau_{a\text{AA}} + \tau_C$) behind from true time.

Summary

Pcal installation is already finished.

Characterization of Pcal instrument is ongoing

Stability of laser power Measurement of the optical loss Precision of the beam position

We are now developing the reconstruction pipeline of h(t)

First pipeline test are planned during Commissioning test. Data transfer test had been already succeeded.