Near-unstable cavities for future gravitational wave detectors

Haoyu Wang

Beijing Normal University (BNU) University of Birmingham (UoB) University of Shanghai for Science and Technology (USST)

> 15/02/2019 KIW, Perugia, Italy

A brief introduction of myself Haoyu Wang

PhD in the University of Birmingham Member and author of LSC 10/2013-08/2018

A. Freise

C. Mow-Lowry

Post-doc in the University of Shanghai for Science and Technology Visiting researcher in the Beijing Normal University Joined KAGRA since 11/2018

Zonghong Zhu

Motivation

Coating thermal noise

Molecular Brownian motion

Thermally excited vibrational modes

Ways to reduce:

- Cryogenic techniques: reduce T
- Better coatings: lower losses
- Improve configuration: larger beam size

An old document: LIGO 3 Strawman Design, Team Red (LIGO DCC/public/T1200046)

Input mirror: 5.31cm -> 8.46cm (60%) End mirror: 6.21cm -> 9.95cm (60%) g-factor: 0.832 -> 0.974

Coating thermal noise expected to be reduced by a factor of 1.6 by using larger beam size on arm cavity mirrors

Recycling cavities in Advanced Virgo currently are near-unstable

Problems of NUCs

0.999

0.99

0.9

റ്റ

 Beam parameters change dramatically: easy to lose stability

-10

-5

5

0 x [cm] 10

• Mode bunching: lack of Gouy phase

Distorted mirror 2.5 surface, Z(x,y)2 Easily affected by mirror defects 10 1.5 Incident beam TEM00 -> TEM01, TEM02, ... Height [nm] 0.5 y [cm] z-axis Reflected beam -1 -1.5 -10 -2 Angular instability -2.5

Reflectivity, r

Tabletop Experiment https://doi.org/10.1103/PhysRevD.97.022001

Goal: how far away can we go towards the stability edge without causing too much problems?

The plane-concave cavity

Parameters of our plane-concave cavity

	Cavity length (m)	0.956	0.993	0.999	0.9999
	$\frac{1}{1} \frac{1}{1} \frac{1}$	263.56	168.04	103.46	58.19
	Beam spot at EM (mm)	1.26	2.01	3.27	5.82
EM	Rayleigh range (mm)	205.10	83.37	31.61	10.00
	Divergent angle (mrad)	1.29	2.02	3.27	5.82
1т ем	FSR (MHz)	156.80	150.95	150.05	149.91
	$f_1 \; (imes \mathrm{FSR})$	0.433	0.474	0.490	0.497
	$f_2 ~(imes { m FSR})$	0.865	0.947	0.980	0.994
	δ_2	563.2	223.2	84.6	26.6
	g_c	0.044	0.007	0.001	0.0001
g ₂ ->	0 g_c^*	0.832	0.972	0.996	0.9996
	ем [] Ем [] g ₂ ->	$ \begin{array}{c} \begin{array}{c} \mbox{Cavity length (m)} \\ \mbox{Beam waist } (\mu m) \\ \mbox{Beam spot at EM (mm)} \\ \mbox{Beam spot at EM (mm)} \\ \mbox{Rayleigh range (mm)} \\ \mbox{Divergent angle (mrad)} \\ \mbox{FSR (MHz)} \\ \mbox{FSR (MHz)} \\ \mbox{FSR} \\ \mbox{f}_1 (\times FSR) \\ \mbox{f}_2 (\times FSR) \\ \mbox{d}_2 \\ \mbox{d}_2 \\ \mbox{g}_c \\ \end{array} \\ \mbox{g}_c^* \end{array} $	$ \begin{array}{c c} \mbox{Cavity length (m)} & 0.956 \\ \hline \mbox{Beam waist } (\mu m) & 263.56 \\ \hline \mbox{Beam spot at EM (mm)} & 1.26 \\ \hline \mbox{Rayleigh range (mm)} & 205.10 \\ \hline \mbox{Divergent angle (mrad)} & 1.29 \\ \hline \mbox{FSR (MHz)} & 156.80 \\ \hline \mbox{I} & f_1 (\times FSR) & 0.433 \\ \hline \mbox{I} & f_2 (\times FSR) & 0.865 \\ \hline \mbox{G}_2 & 563.2 \\ \hline \mbox{G}_2 & g_c & 0.044 \\ \hline \mbox{G}_2 & g_c^* & 0.832 \\ \end{array} $	$ \begin{array}{c ccccc} & Cavity length (m) & 0.956 & 0.993 \\ \hline & Beam waist (\mu m) & 263.56 & 168.04 \\ Beam spot at EM (mm) & 1.26 & 2.01 \\ & Rayleigh range (mm) & 205.10 & 83.37 \\ & Divergent angle (mrad) & 1.29 & 2.02 \\ & FSR (MHz) & 156.80 & 150.95 \\ \hline & f_1 (\times FSR) & 0.433 & 0.474 \\ & f_2 (\times FSR) & 0.865 & 0.947 \\ & \delta_2 & 563.2 & 223.2 \\ & g_c & 0.044 & 0.007 \\ \hline & g_c^* & 0.832 & 0.972 \\ \end{array} $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Mode splitting observed

The surface of the EM is ellipsoidal.

The separation can be reduced by increasing the stress of the screw holding the spherical mirror, thus compensating the surface deformation.

The measurement

 We measure resonant frequencies of 2nd modes and the fundamental mode.

Measurement of resonances

Cavity length as a function of mode spacing frequency for the plane-concave cavity

$$L_0 + \Delta L = \frac{R_c}{2} \left[1 - \cos\left(\frac{\Delta f^{02}}{\text{FSR}}\pi\right) \right]$$

We change the position of the concave end mirror via a translation stage and take 18 measurements.

The mode matching is very difficult.

By fitting mode frequency changes,

- we can quantify the stability
- study mode behaviors
- it is possible to infer the shape of the mirror surface

The goal of the simulation is trying to understand mode deviations.

We use FINESSE to derive resonances and shapes of the higher order modes and the 00 mode.

Summary

- In order to use larger beam size on cavity mirrors to reduce coating thermal noise for 3rd generation GW detectors, we need to push the cavity to the edge of stability.
- A tabletop setup had been built to investigate the performance of NUCs and some preliminary results are achieved.
- The main factor that determines the mode behavior in this extreme near-unstable condition is instead thought to be mirror imperfections
- We are working hard on simulations trying to explain measured behaviors of HOMs.

Thank you!