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Motivation
New era: gravitational waves astronomy

10 BH-BH mergers, 1 NS-NS merger

→ O1/O2 Catalog: https://www.gw-openscience.org
Magdalena Sieniawska (CAMK) Searching for continuous gravitational waves in LVC



4/25

Motivation
New era: gravitational waves astronomy

Upgrade of the existing detectors + new methods in data analysis
+ new detectors = detections of the more subtle signals

Reviews: K. Riles (2013), Andersson et al. (2009)
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Sources of CGW
Neutron stars

According to
Einstein’s quadrupole formula
time-varying (mass) quadrupole moment
is needed to produce GW.
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CGW - emission mechanisms models in NS

I Mountains (elastic, magnetic,
viscosity stresses)
fGW = 2frot

I Oscillations (r-modes)
fGW = 4/3frot

I Free precession
fGW ∝ frot + fprec

I Accretion (thermal gradients)
fGW ≈ frot

Reviews
Bejger (2018)
Lasky (2015)
Andersson et al. (2011)
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CGW radiation model

Commonly used model
Non-axisymmetric rotating NS (described as a triaxial ellipsoid)

radiating purely quadrupolar CGW.

Strain amplitude

h0 = 4× 10−25
(

ε
10−6

) ( I3
1045 g cm2

) ( f
100 Hz

)2
(

100 pc
d

)
Compare GW 150914: h0 ∼ 10−21 (Abbott et al. 2016)
ε = (I1 − I2)/I3
I = I3
f = Ω/2π
d - distance

Target:
rapidly (or slowly for ET) spinning NS in our Galaxy
(∼ 2600 known, potentially 108 objects)
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Signal-to-noise ratio (SNR)

Regimbau et al. (2017)

Signal-to-noise ratio

SNR ∝ h0√
Sn

√
T

Sn - strain noise
(aLIGO:

√
Sn ∼ 10−23Hz−1/2)

T - observational time

Network of the detectors

SNR ∝
√

N
N - number of detectors with
comparable sensitivity

I GW150914: h0 ∼ 10−21,T ∼ 0.2s→ SNR ∼ 24
I CGW: h0 . 10−25,T ∼ days, months, years...
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Spin-down

NS is loosing energy and
spinning-down, due to the
CGW emission, magnetic
braking, neutrino emission,
accretion (e.g. Greenstein & Cameron 1969,
Illarionov & Kompaneets 1990, Dvornikov & Dib 2009,
Staff et al. 2012).

We can measure it e.g. from
radio-observations.

Spin-down limit (assumption: NS looses energy only due to the CGW)

hspindown = 2.5× 10−25
(

1kpc
d

)√(
1kHz
fGW

)(
−ḟGW

10−10Hz/s

)(
Iz

1038kg·m2

)
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No CGW signal? Set upper limits!

With the known sensitivity of the detectors we can put
constraints on the fGW , ḟGW and ε.

GW strain limit, spin-down limit, sensitivity:
S5, aLIGO, ET
(Lasky 2015; Aasi et al. 2014; Dupuis & Woan 2005) O1 run

Abbott et al. (2017)
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No CGW signal? Set upper limits!

I Most constraining ellipticity is
1.3× 10−8 for J0636+5129

I ε can be converted to a
maximal ’mountain’ size:

for Crab ∼ 10 cm
for Vela ∼ 50 cm

I ε can tell us about NS matter:

∼ 10−5 − 10−7 for ’normal’ NS
Ushomirsky et al. (2000)

∼ 10−4 − 10−5 for ’strange’ NS
Owen (2005)

O1 run
Abbott et al. (2017)
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Data analysis strategies

Is it isolated NS or binary system?
How well do we know the source?
How much computational power do we have?
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Data analysis strategies
Basic idea
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Measured signal strain h(t ; A, λ) depends on:

I Amplitude parameters A ≡ {h0,cosι, ψ, φ0}

I Phase-evolution parameters λ ≡ {~n, f , ḟ , ...}

→ One has to include extra modulations
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F-statistics time-domain method

Developed by Jaranowski, Królak & Schutz (1998).
Search on 4-dimensional (f , ḟ , α, δ) optimal grid (Pisarski & Jaranowski 2015).

F = 2
σ2

(
|Fa|2
〈a2〉 +

|Fb|2
〈b2〉

)
Fa =

∑N
t=1 x(t)a(t)exp[−iφ(t)], Fb =

∑N
t=1 x(t)b(t)exp[−iφ(t)],

〈a2〉 =
∑N

t=1 a(t)2, 〈b2〉 =
∑N

t=1 b(t)2,

σ2 - variance of the data x(t),

a(t), b(t) - amplitude modulation functions (depend on the location and
orientation of the detectors on Earth and on the position of GW source on the
sky (α, δ)),

φ(t) - phase modulation function (like above + depends on frequency f and
spindown ḟ ).
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Targeted searches
e.g. known radio, X-ray or γ-ray pulsars

Heterodyne (Bayesian) method
Dupuis & Woan (2005)

I Bayesian parameter-estimation
for A ≡ {h0,cosι, ψ, φ0}

I Known λ ≡ {~n, f , ḟ , ...}

F-statistics method

Only small range in f and ḟ around
known values is explored.

5-vector method Astone et al. (2010, 2012)

I Fourier-domain
I amplitude modulation from the

Earth’s sidereal rotation of each
detector’s antenna pattern

Upper: S3+S4 runs, Abbott et al. (2008)
Bottom: O1 run, Abbott et al. (2017)
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Directed searches
e.g. non-pulsating X-ray source at the center of a supernova remnant

I f , ḟ , ... are unknown, but sky location is known
I higher f derivatives can be important for young (hot) and/or

accreting NS
I hard to model
I strain depends on age a and distance d (Wette et al.

2008); additional factors like mass or equation of state
increase hage

0 uncertainty by 50%

Strongest possible signal from supernova remnant

hage
0 = 1.26× 10−24

(
3.30kpc

d

)(
300yr

a

)1/2
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Blind (all-sky) searches
Unknown sources

Computational cost
Exploring huge parameter
space requieres huge
computational power
→ reduce number of
parameter to the minimum

F-statistic pipeline example

Computing power scales as ∼ T 5log(T )
→ divide data into shorter segments (e.g. 6 days)

Magdalena Sieniawska (CAMK) Searching for continuous gravitational waves in LVC



18/25

Blind (all-sky) searches
Unknown sources

Hough transform (Hough 1959, Hough 1962)

I detection statistic is compared to a
threshold and given a weight

I weighting based on antenna pattern
and detector noise

I antenna pattern depends on
{α, δ, f , ḟ , ...}

I different parameter spaces chosen to
accumulate weight sums:

Sky Hough (Krishnan et al. 2004, Aasi et al. 2014)

Frequency Hough (Antonucci et al. 2008, Astone et
al. 2014, Aasi et al. 2016 )

I sums of weights are accumulated in
“maps”
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Blind (all-sky) searches
Unknown sources

Generalized Frequency Hough Miller et al. (2018)

Braking index

n = f |̈f |
ḟ 2

particle wind n = 1
dipole (EM) radiation n = 3
quadrupole (GW) radiation n = 5
oscillations (r-modes) n = 7

Magdalena Sieniawska (CAMK) Searching for continuous gravitational waves in LVC



20/25

Blind (all-sky) searches
Unknown sources

F-statistic method
Main goal:to find F-statistic maximum and f , ḟ , α, δ associated with it.

Time domain frame data

Short Fourier Transform
Data Base (SFDB)

Narrow-band time
domain segments

Ephemeris data
(JPL, LAL
library)

Optimal grid
of parameters

Search for candidates
in time-domain segments

Sensitivity
upper limits

Search for coinci-
dences among the
candidate signals

Estimate of FAP,
followup study
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Hierarchical pipeline allows for computational cost reduction.
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Blind (all-sky) searches
Unknown sources

Lines and signals in F-statistics method
Main goal: find F-statistic maximum and f , ḟ , α, δ associated with it.

SNR =
√

2(F − 2)

Line: Signal:

Magdalena Sieniawska (CAMK) Searching for continuous gravitational waves in LVC



22/25

DetChar and CGW synergy
Lines hunt - spectral density

DetChar team provides list of known, stationary lines→ vetoing.

Plot courtesy of A. Królak

CW team during data analysis finds new lines, distinguishes lines and
astrophysical signals and gives feedback to DetChar.
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DetChar and CGW synergy
Lines hunt - time evolution

Some lines are problematic - they evolve or disappear in time.
Band 0047, 24-days

Frame 003 Frame 009
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Future insights

I detections and/or better upper limits
I mountains as small as 10 cm can be detected (ET)
I exploring lower frequencies
I joint EM and GW observations will deliver unique

information about NS (equation of state, environment,
physical phenomena)
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Future insights

Blair et al. (2016) Plot generated on http://gwplotter.com/

Not only sensitivity improvement matters.
The higher number of the detectors in the
network, the bigger chance to detect CGW!
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