Status of Type-A suspensions for KAGRA

Yoshinori Fujii for KAGRA collaboration
Status of Type-A suspensions for KAGRA

What is going on?

-- Mechanical installation

-- Servo filter implementation

-- Verification of suspension performance
Type-A suspensions?

For the test masses,
- Upper 5 stages: room-temperature
- Lower 4 stages: cryogenic-temperature
Type-A suspensions?

Inverted Pendulum

(\sim 70 \text{ mHz})

Geometric-Anti Spring

(\sim 0.4 \text{ Hz})
Type-A suspensions?

INVERTED PENDULUM

- with 3 horizontal LVDT & actuator units
- -- inertial sensors

GEOMETRIC-ANTI SPRING

- with 1 vertical LVDT & actuator unit
Type-A suspensions? (With collaboration of group in Pisa)

Bottom-Filter Damper

with 3 horizontal & 3 vertical LVDT & actuator units
Type-A suspensions?

Inside cryostat

payload

Heat-link VIS

(+ Wide-angle baffle)

Heat-link VIS

JGW-P1809347

13.5 m
Type-A suspensions?

- Platform
- Marionette Recoil Mass & Marionette
- Intermediate Recoil Mass & Intermediate Mass
- Mirror Recoil Mass & Mirror
- Blade Spring
- Moving Mass
- Heat link
- Optical lever
- Reflective photo-sensor & coil-magnet Actuator units

JGW-P1808219
Then, mechanical installation status for O3-observation
Mechanical installation has done! For all 4 of them!

(Finished, for all 4 of them)

(Still mechanical-wise repairing work remains though..)
Mechanical installation has done! HOWEVER ..

ETMX & ETMY:
- for ETMX - F2 GAS
- for ETMY - F1 & F2 GAS
- Hitting,, ~No oscillation
- Mass tuning, necessary but no accessibility.

ITMX & ITMY:
- for ITMX / ITMY – F0 GAS
- Newly made blades could not hold the system..
- Blade replacement, necessary but time consuming (etc).

Images showing mechanical installation and the problems with ETMX and ETMY.
Mechanical installation has done! HOWEVER..

According to a simulation, assuming 1% coupling,

"acceptable for the O3-run"
(should be)

Note:
-- Modeled w/o Heat-links
-- params are not tuned.
Servo filter implementation status
With displacement sensors, [for damping]

IP

DC+Damp

For L / T / Yaw

BF-damper

DC+Damp

For Yaw

For L / T

(DMouplev)

DC+Damp

For P / Y

5th KAGRA international workshop on February 14th 2019, Yoshinori Fujii
With displacement sensors, [residuals]

- **ETMX**
 - Pitch: 0.16
 - Yaw: 0.15

- **ITMX**
 - Pitch: 0.41
 - Yaw: 0.31

Locked! Thanks to Kamioka environment.
With displacement sensors, [residuals]

In bad weather

NOT locked..

0.25

ETMX

0.56

ITMX

0.29

ETMX

0.55

ITMX

WIT DISPLACEMENT SENSORS, [RESIDUALS]

IN BAD WEATHER

NOT LOCKED..
Candidate (main) resonant modes? Preliminary

- damping at tower-part
+ decoupling / inertial damping

- damping at payload
Verification of suspension performance
Measurement:

Mechanical suspension performance with X-arm cavity
Vibration isolation ratio, \[\text{Good news!} \]

From ground to TM
V to L coupling, [System is not yet identified..]

From BF-GAS to TM

Real was not so simple..
Summary:

-- All the Type-A suspensions have been installed.
-- Damping controls are working properly, however, some resonances are not yet damped efficiently.
 - Implement damping controls at payload stages

-- Reducing RMS is necessary when the seismic noise is high.
 - Implement inertial damping at IP stage

For soon next:

- Do mode identification including the heat-link peaks
- Design the filters in the observation phase.
Backup
Seismic noise

Seismic noise (Tokyo)
Seismic noise (KAGRA site)
Target sensitivity

\[10^{-8}\]
Seismic attenuation

![Seismic attenuation diagram](image)

- Mirror displacement x [m/√Hz]
- Frequency [Hz]
- KAGRA suspension
- Requirement
- Ground
- Single
- Double
- Triple
- 5-stage

Ex. KAGRA

3 m
Resonance damping

\rightarrow Active control

Starting interferometer operation

Stable interferometer operation
Designing active control system / Control phase

1. Calm-down phase
 - Suppress large disturbance

2. Lock-acquisition phase
 - Reduce RMS velocity
 - RMS angle (Root-Mean-Square)

3. Observation phase
 - Keep position with low noise control
Type-A suspensions?

Inside cryostat

13.5 m

JGW-P1809347
Type-A suspensions?

CURRENT STATUS OF HLVIS INSTALLATION

13.5 m

will be installed in the end of Jan. 2019

JGW-P1809382
With displacement sensors, residuals

Seismic motion when the weather was normal/bad (From page #16)

\[\text{EXV: } 2.4 \times 10^{-2} \text{ um/rtHz or } 1.2 \times 10^{-2} \text{ um} \]

\[\text{IXV: } 2.6 \times 10^{-2} \text{ um/rtHz or } 1.2 \times 10^{-2} \text{ um} \]
Vertical transfer functions (fitted)

ETMX

ITMX
Measurement:

Mechanical suspension performance with X-arm cavity
Force transfer functions

From (TM-RM)-act to TM
Force transfer functions

From (IM-IMR)-act to TM
Force transfer functions

From (MN-MNR)-act to TM

Actuation

5th KAGRA international workshop on February 14th 2019, Yoshinori Fujii
Note: Measurement of mechanical suspension performance with X-arm cavity

<table>
<thead>
<tr>
<th>Excited stage name</th>
<th>Degree of freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>P</td>
</tr>
<tr>
<td>IM</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>V</td>
</tr>
<tr>
<td>MN</td>
<td>L</td>
</tr>
<tr>
<td>BF</td>
<td>GAS</td>
</tr>
<tr>
<td></td>
<td>(L)</td>
</tr>
<tr>
<td>IP</td>
<td>L</td>
</tr>
</tbody>
</table>

Excitation point:

Sensing point:

All the local sensors for ETMX and ITMX

(*1) Some resonances have to be identified, as shown in the above.
(*2) measurement files are stored under /users/VISsvn/ though, Not much organized well now.. please let me know if you want to have them ASAP.
Type-A SAS,
‘TyrpeA180429_20K’
Eigen mode: 75 modes

Less interest now
Designing active control system / ex. Type-Bp SAS

1. Calm-down phase

- DC + Damp
- DC
- Damp
- Damp
- Optical sensors
- Displacement sensor (LVDT)
- Displacement sensor (OSEM)

2. Lock-acquisition phase

- DC + Damp
- DC
- Damp
- Damp
- Optical sensors
- Displacement sensor (LVDT)
- Displacement sensor (OSEM)

3. Observation phase

- DC + Damp
- DC
- Damp
- Damp
- Optical sensors
- Displacement sensor (LVDT)
- Displacement sensor (OSEM)
2. Decay time measurement

For damping resonances

1/e decay time

→ We have to measure the decay time constants w/ and w/o damping controls, in order to verify the damping control performance, FOR ALL THE TYPE-A/B/Bp SUSPENSIONS.

(Example)