Infrastructures especially Underground: the KAGRA experience

Shinji Miyoki, KAGRA Collaboration, CLIO-Strain Meters Group, Superconductive Gravimeter Group

Institute for Cosmic Ray Research and KAGRA Collaboration
The 1st KAGRA-Virgo-3G Detectors Workshop, Perugia, Italy 2019
Thanks for Core to Core Program Again

KAGRA thanks to the following collaborators for getting a funding, core to core program for the collaboration researches and communication in GW physics and multi-messenger astronomy form FY2018 to FY2022.

USA: Caltech(LIGO) - Prof. Rana ADHIKARI
United of Kingdom: Univ. Glasgow - Prof. Sheila ROWAN
Italy: EGO/Virgo - Prof. Michele PUNTURO
France: Centre National de la Recherche Scientifique - Prof. Matteo BARSUGLIA
Australia: Swinburne University of Technology - Prof. Matthew BAILES
Germany: Max Planck Institute - Prof. Harald LUECK
China: Beijing Normal University - Prof. Zong-Hong ZHU
Taiwan: National Tsing-Hua University - Prof. Albert KONG
Korea: Sogang Univ. - Prof. Kyuman CHO
India: Inter-University Centre for Astronomy and Astrophysics - Prof. Sukanta BOSE
Vietnam: Hanoi National University of Education - Prof. NGUYEN Cao Khang

The 1st KAGRA-Virgo-3G Detectors Workshop, Italy, Feb 16th 2019
Although KAGRA, CLIO, SG experiences just show our local lessens, we will present what we got and suffered from... (I expect many predecessors such as Gran Sasso, SNO, CERN and so on.)

- KAGRA Underground Geophysical Background
- Tunnel Excavation and Structure
- Treatment of
 - Water
 - Air
 - Electricity
 - Cleanroom
 - Radioactive Radon
- Safety
Essential Merits (& Issues) of Underground

- Out-band frequency range seismic noise at low frequency has nonlinear effect on in-band frequency range sensitivity in GWDs. So lower seismic noise in out-band is desirable.
 - Smaller low-frequency motion of mirror
 - Lower gain of control system necessary
 - Lower in-band noise imposed by control system
- We can expect Low Gravity Gradient Noise, Newtonian Noise and natural stability of temperature.

on the other hand,

- We found the “water” in the mountain is annoying source in many practical aspects.
- “Newtonian Noise” due to water flow near mirrors should be investigated. Some estimation was proposed.
- The word of “underground” might be better to be replaced with “on/in a hard rock bulk”.

The 1st KAGRA-Virgo-3G Detectors Workshop, Italy, Feb 16th 2019
KAGRA in “HIDA” Gneiss

KAGRA is situated in one of the oldest rock of “Hida Gneiss” in Japan.

Hida Gneiss (~2G years old)
Granite (~0.2 Gyears old)

Norikura (3016m)
Yakedake Volcano (2455m)
Hakusan (2702m)
Tateyama (3015m)

The 1st KAGRA-Virgo-3G Detectors
1 mm/year slip or creep for 3 million years.

It made crank shape of “Takahara” river near KAGRA.
In Lucky Position Protected by Mountains

KAGRA is protected by something (Mountains Line.)

The 1st KAGRA-Virgo-3G Detectors Workshop, Italy, Feb 16th 2019
Kamioka Seismic Noise (< 100sec)

546 days data average, distribution and Max/Min by CMG-3T EW direction @ CLIO (Sept. 2009 ~ Feb. 2011)

The 1st KAGRA-Virgo-3G Detectors Workshop, Italy, Feb 16th 2019

T. Sekiguchi (U-Tokyo)
Kamioka Seismic Noise (< 100sec)

546 days data average, distribution by CMG-3T EW/NS/UD directions @ CLIO (Sept. 2009 ~ Feb. 2011)

Sensor or measurement Noise
Micro Seismic Noise Level Distribution

Histogram of displacement at 0.2 Hz (Micro-seismic noise Peak) (Sept. 2009 ~ Feb. 2011)

Mid : 0.3 um/sec
Seismic Noise Comparison around KAGRA

- $f < 1\text{Hz}$
 \(\text{Outside}^{(\text{Moz,Ato})} = \text{CLIO}\)

- $1\text{Hz} < f < 10\text{Hz}$
 \(\text{Outside}^{(\text{Moz,Ato})} > \text{CLIO}\)

- $f > 10\text{Hz}$
 \(\text{Outside}^{(\text{Moz,Ato})} = \text{Tokyo}\)

This shows that natural events such as atmospheric and ocean events dominate the seismic noise above $\sim 10\text{Hz}$, while human activity dominates it below $\sim 10\text{Hz}$.

K. Yamamoto (U-Tokyo)
1500m Strain Meter in X arm

Strain meter senses differential motion between BS and a Xend mirror.

K. Miyo (U-Tokyo)

The 1st KAGRA-Virgo-3G Detectors Workshop, Italy, Feb 16th 2019
The 1st KAGRA-Virgo-3G Detectors Workshop, Italy, Feb 16th 2019

K. Miyo (U-Tokyo)

Differential Displacement by ST and Actual Seismic Noise? by Seismometer

Matches with CLIO seismic noise data

Two Seismometers (Xend and Corner) Differential

- Too big difference
- Seismometer also senses tilt?
• 10^{-8} strain (1 micrometer for 100m) permanent step was observed because of M7 level Earth quakes 400km away from KAMIOKA.

• This order matched with the predicted values from its Earthquake slip model.
Raw data can be predicted by:

1. Standard Solid Model of the Earth
2. Ocean Gravity Load
3. Local deformation property

So, it is very important to obtain (3) for better characterization and the future feedforward control for KAGRA.
Seasonal Deformation (> Months)

- Snow and water in the case of KAMIOKA.
- Obviously ground deformation, groundwater pressure and rainfall have correlation with each other.
- How about gravity??
Gravity Change (>Several Months)

Superconductive Gravity Meter (SG)
In the same mountain With KAGRA (relatively precise)

Absolute Gravity Meter (FG5)

Snow Gravity

Ground deformation by snow mass

Raw Data

Trend Removal

Discrepancy bw FG5 and SG

Imanishi (ERI, U.Tokyo) The 1st KAGRA-Virgo-3G Detectors Workshop, Italy, Feb 16th 2019
The stripped-down cost for KAGRA tunnel was ~28 MUSD for minimum requirements. However, additional cost was required for unexpected accident and bad ground conditions. The additional cost is acceptable at some level in M. of Land Infrastructure and Transportation, while it is not so acceptable in MEXT in Japan.

<table>
<thead>
<tr>
<th></th>
<th>KAGRA</th>
<th>Highway (Sasago)</th>
<th>Rail Way (Tsugaru)</th>
<th>Subway (in Tokyo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>4m x 4m (~7,770m)</td>
<td>~10m x ~8m (~4,700m)</td>
<td>? (~53,850m)</td>
<td>~6m x ~6m</td>
</tr>
<tr>
<td>Cost (USD/m)</td>
<td>3,600</td>
<td>47,900</td>
<td>115,000</td>
<td>283,000 ~167,000</td>
</tr>
<tr>
<td>Cost Type</td>
<td>Only tunnel (NATM)</td>
<td>Including Infrastructure</td>
<td>Including Infrastructure Under Sea</td>
<td>Including Infrastructure (Shield Machine)</td>
</tr>
</tbody>
</table>
- BS position is at Latitude:N36.41, Longitude:173.31.
- Yarm direction: 28.31 deg. From the North.
- Sea level height: X end: 382.095m
 BS: 372m
 Y end: 362.928 m

- L shapes with 500m and ~900m access tunnel to corner and Y end stations
- No access tunnel to X end. (=> problem)
- There are 2-layers structure for each station to utilize the rocks as the SAS suspension stable basis.
Tunnel Position and Alignment

- BS position is Latitude: N36.41, Longitude: 173.31.
- Yarm direction: 28.31 deg. From the North.
- Sea level height: X end: 382.095m, BS: 372m, Y end: 362.928 m

- L shapes with 500m and ~900m access tunnel to corner and Y end stations
- No access tunnel to X end. (<- problem)
- There are 2-layers structure for each station to utilize the rocks as the SAS suspension stable basis.

The 1st KAGRA-Virgo 3G Detectors Workshop, Italy, Feb 16th 2019
Slope of $1/300$ was selected to drain the water to rivers. Horizontal planes for each station are prepared for easiness during installing vacuum tanks.
X, Y arm Tunnel Depth and Rock Conditions

Gn : Gneiss, Ls : Crystalline limestone, Me : Basic Gneiss, Gr : Granite, Te : Conglomerate stone

Rock Conditions : good = B, C1, C2, D1 = bad

The 1st KAGRA-Virgo-3G Detectors Workshop, Italy, Feb 16th 2019
Typical Arm Tunnel Cross Section and Corner Station

- **B**: 3cm sprayed concrete wall
- **C1**: 5cm Sprayed concrete wall
- **C2**: 5cm sprayed concrete wall and metal arch supports
- **D**: 30cm drain pipe for Y -> we found it is too small -> **D**: 60cm drain pipe for X
- **D1**: 10 cm Sprayed concrete wall and metal arch supports
- 15 cm sprayed concrete
- Many rock bolts

The 1st KAGRA-Virgo-3G Detectors Workshop, Italy, Feb 16th 2019
Heavy metal and pH of spring water during Excavation

- **Serious “Cost” problem about heavy metal in rocks.**
 - Rocks always contain heavy metals such as As, Zn, Pb, Cd, B, F, Ce, Cr, especially in KAGRA site that used to be “Zn mine”.
 - We cannot bury them directly in some places if their content exceeds the allowed level.
 - Of course their removal cost is high!
 - The contain level was sometimes a very little bit high in KAGRA.

- **Another serious cost problem about alkalinity drain water.**
 - Concrete contains CaCO₃, that alkalizes spring water, not only during construction but for a long time after construction.
 - We cannot drain it directly in rivers and so on if its pH exceeds the allowed level.
 - You should have to pay somewhat for neutralization by using H₂CO₃.
Tunnel Completed in March 2014

Total
7,770m excavation
145,000 m³
(x 1.7 times for actual volume)

Atotsu parking and SR-BS area

Atotsu Entrance

The 1st KAGRA-Virgo-3G Detectors Workshop, Italy, Feb 16th 2019
The KAJIMA’s precise blasting technique to make 4m length advancement enabled so short completion of KAGRA tunnel. This became a sample for JR’s linear shinkansen tunnel.
Spring Water Treatment from Walls

(1) Corner and End Stations

- The water shielding method using Anti-water plastic layer on the urethane on the wall rock was selected.
- However, it didn’t work very well. We got many water leak.
- We put vinyl sheets on the plastic painting.
- However, we could not stop water leak from anchor parts of crane and so on.

Well designed sheet covering or shaped concrete (like a road tunnel) walls that have water shielding function should be introduced. However it costs higher.
(2) Arm Tunnel Area

- We just put vinyl sheets on the concrete wall only where water leak is hard. Not for all area.
- Water dropping make noise, maybe.

First aid for water dropping in Yarm above vacuum ducts.
Floor Spring Water Treatment: in Stations

- We completely missed to estimate the amount of spring water in the tunnel.
- Enough layers of concrete floor is necessary to reject water flooding from the floor because the concrete floor inevitably will have cracks.
- Deeper ditches are also desired to keep the water level lower than the bottom of the surface concrete.

KAGRA Floor Design

Water flooding point

Rock

Ideal Floor Design

Rock

- We made several deeper holes to collect waters, and put small water pumps to transfer out side the stations. So, moving pumps might be noise in the future.

The 1st KAGRA-Virgo-3G Detectors Workshop, Italy, Feb 16th 2019
Arm Tunnel Spring Water Treatment

- Water in the Yarm is a lot because of known faults.
- From the end of March to the end of May, the Y-arm central part (1km ~ 2.7km area from the corner station) was covered with water.
- To avoid flooding, KAGRA has the drain relays using water pipes (d 150mm), sumps, pumps and vertical drain hole in the only Y arm.
Despite the huge amount of water just after excavation in 2014 and 2015, it has tended to remain constant except for the effect of snow.
Newtonian Noise from Flowing Water

$D = 2\, \text{m}$, $w = 0.4\, \text{m}$, $\rho = 1\, \text{g/cm}^3$, $L = 3\, \text{km}$, and $\delta v_\perp = 0.2\, \text{m/s}$.

$D > 5\, \text{m}$ is actual, so less influence expected.

KAGRA Sensitivity

Nishizawa (Nagoya Univ.)
Arm Tunnel Spring Water Treatment

- In X arm, we put a larger drain pipe under the floor, then we could avoid flooding.
- The water from this X arm is transferred to the drain pipe in the Atotsu access tunnel.
- Because the drain pipe is insufficient below floors in the access tunnel, there is flooding in the access tunnel.

It is important to design how to drain water systematically.

From Corner Station
From X arm
To Atotsu Access Tunnel

Vacuum Ducts
D:60cm

X-arm tunnel (Secondly excavated)
Spring Water Amount Depends on SNOW

- Just after finishing excavation, the Y arm water became up to 1250 [ton/hour] (Total 2050 [ton/hour])

Y Arm Dain Water Amount [ton/hour]

<table>
<thead>
<tr>
<th>Year</th>
<th>Water Amount [ton/hour]</th>
<th>Snow Amount [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-15</td>
<td>Huge snow</td>
<td>887</td>
</tr>
<tr>
<td>2015-16</td>
<td>Extremely less snow</td>
<td>245</td>
</tr>
<tr>
<td>2016-17</td>
<td>Heavy snow</td>
<td>609</td>
</tr>
<tr>
<td>2017-18</td>
<td>A lot of snow</td>
<td>567</td>
</tr>
</tbody>
</table>

Winter 15-16

Winter 16-17

Winter 17-18

Strong Typhoon Attacked KAGRA
The tunnel was made by the NATM method. So the rock is expected to have small cracks on its surface. Because of it, uneven settlement occurred for each cryostat (12 ton)? We are now monitoring the cryostat position (2016). \textendash{} In 2018, it seems to show no change.

The known dislocation where the KAGRA tunnel crosses is now monitored. Even if the tunnel surface was covered with 5cm concrete, we found several cracks there (2016). \textendash{} In 2018, it also seems to stop.
Air (O₂, CO₂, CO) and Sensors

- 900 m³/h for all stations (guaranteed at the blowing point by setting the 5 kPa pressure at the fan position). 30 working peoples are assumed from 30 m³/person/h.

- Air evacuation fan ducts for CO, CO₂ from UNIC trucks in the parking, chemical (Acetone, First Contact) and so on is prepared from the corner station to the Atotsu entrance (outside).

- We might not be able to stop air flow to keep humidity at moderate level (~60%) even if during observation. (or keep temperature by heaters to reduce relative humidity.)
Vehicles free from CO

NISSAN e-nv200

Bw. Building and KAGRA Parking

MITSUOKA T3 (100kg)

In Arms and Access Tunnel

Electrical Assist Bicycle in Arms
Rn Gas

- As you, especially European people, know, high Rn gas level expected from stone and underground.
- Super KAMIOKANDE group prepared for anti-Rn gas sheets on all the surfaces of rock walls mainly for reducing background, and introduce a lot fresh air from outside.

- According to one report in Europe, every 100 Bq/m^3 enhances the lung cancer rate by 16%.

- The present air injection is not enough to reduce in KAGRA.
Temperature and Humidity Control

<table>
<thead>
<tr>
<th></th>
<th>Temperature</th>
<th>Humidity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corner</td>
<td>X End</td>
</tr>
<tr>
<td>Natural</td>
<td>~ 17 C</td>
<td>~ 18 C</td>
</tr>
<tr>
<td>Operation</td>
<td>~ 28 C !</td>
<td>~ 28 C !</td>
</tr>
<tr>
<td>FFUs 180W, KOACHs</td>
<td>(~200, 24, ??)</td>
<td>(14, 12)</td>
</tr>
<tr>
<td>200W, DGS Racks</td>
<td>~28 C !</td>
<td>~28 C !</td>
</tr>
<tr>
<td>~500 W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without no coolers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With Air Coolers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>airport cooler with On/OFF control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(using water cooling)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IXA : 16.6</td>
<td>EXC : ~25</td>
<td>EYA : 18.1</td>
</tr>
<tr>
<td>IYA : 17.4</td>
<td></td>
<td>EYC1F : 19.9</td>
</tr>
<tr>
<td>Center : 24~25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-R : 24~25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR : 23.5~24.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(20kWx4 air coolers)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability : ~0.1C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IXA : 78</td>
<td>EXC : ~?</td>
<td>EYA : 68</td>
</tr>
<tr>
<td>IYA : 80~65</td>
<td></td>
<td>EYC1F : 57</td>
</tr>
<tr>
<td>Center : 48~52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-R : 88~93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR : 34~37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(20kWx4 air coolers)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Temperature change does affect the GAS filters conditions.
- Humidity control is also important to keep instruments healthy.
- We should set the target temperature (24~25 for the corner station) as the observation mode where the minimum instruments (cool air supplier) are working. Maybe “silent” coolers should be prepared to keep temperature and relative humidity.
Electrical Equipment Issues

Anxiety and Uncertainties

- We make AC100V, 200V, ~400V from 6600V.
- 6600V lines go through each stations (~ 10m height) and tunnels (~ 4m) near instruments -> we don’t know how much it affects as line noises ??
- No place to take ground in the “Rock” tunnel. We have just ground line for power line (not for measurement). -> Water maybe cannot be ground. Vacuum ducts ?

The 1st KAGRA-Virgo-3G Detectors Workshop, Italy, Feb 16th 2019
Cost Reduction of Power Line

- We need AC100V, or AC200V in “long” arms for vacuum pumps, remote monitoring.
- You should know that the power line is “copper” that is expensive metal, and that a longer cable requires “fat diameter” to keep target voltage.
- Many cubicles that generate ~400V from higher voltage at every 1 ~ 1.5km can reduce cost compared long and fat cables that supply low voltage with less cubicles.

The 1st KAGRA-Virgo-3G Detectors Workshop, Italy, Feb 16th 2019
Water for Cryo-coolers and Laser

- KAGRA requires a lot of industrial level water for cryo-coolers (ex. 12 units in the corner station) and a laser.
- Total 400 litters / min (for corner station) are required including air coolers and so on.
 - Around the KAGRA site, there is no such quality water public supplier because the site is isolated.
 - Even the village including KAGRA and SK buildings is using the spring water that comes from the mountain that housing SK, KAGRA.

- KAGRA prepared a precipitation purification equipment inside KAGRA to supply water that satisfies the requirement for cryo-coolers and laser from the spring water.
- Although, Ph. Is a little bit high, no Ph. Adjustment.
Safety and Monitoring

LIFE Threatening Events

- **Fire** -> Static smoke sensor monitoring

 In any cases, obey the escaping rule including shelter at X-end that has no escaping road except for the X arm tunnel.

- **Low O2 (<19%), high CO (>50ppm)** -> Static and mobile sensor monitoring

 Rechecking rule using no warning sensor, if true, obey the escaping rule with masks.

- **Organic solvent** -> obey national laws for usage and disposal with draft chambers.

Monitoring

- Many web cameras
- Smoke
- Unusual heat in the laser room
- O2, CO level
- Water supplier operation (pumps, water level)
- Air fan operation (fan activation, humidity controller)
- High/Low voltage electrical condition (leakage, trip)

All event warning are sent via e-mail and we correspond according to contact network.

The 1st KAGRA-Virgo-3G Detectors Workshop, Italy, Feb 16th 2019
Safety and Monitoring strongly depends on the only one optical fiber from the KAGRA Building to the corner station through Mozumi and Y-arm tunnel (total ~ 5km).

- For redundancy, we prepared another network on cable TV network from Atotsu entrance.
- In the case of X arm, we have prepared a metal wire telephone line in the water ditches for emergency communication.

The 1st KAGRA-Virgo-3G Detectors Workshop, Italy, Feb 10th 2019
Summary

- Please don’t repeat KAGRA’s undesirable FCL design for FCL for ET and CE even if higher cost is expected.

- Key for underground usage might be “rock condition” that will houses interferometers.

- One of big problems to utilize underground is water treatment that could be one od sources to spoil NN.

- Good common mode rejection for frequency ranges below 0.1 Hz can be expected if the rock condition is good.

- Geophysical understanding for a site is important to predict the ground motion that might let IFO instable.
Acknowledgement

This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: JP17H06358, JP17H06361 and JP17H06364, JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research (S) 17H06133, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF) and Computing Infrastructure Project of KISTI-GSDC in Korea, Academia Sinica (AS), AS Grid Center (ASGC) and the Ministry of Science and Technology (MoST) in Taiwan under grants including AS-CDA-105-M06, the LIGO project, and the Virgo project.