

Results of the First Injection of Frequency Independent Squeezing in Advanced Virgo

M. Tacca and the AdV Squeezing Working Group

on behalf of the Virgo Collaboration

1st KAGRA-Virgo-3G Detectors Workshop - Perugia - 2019 February 16th

Motivations

- Improve the sensitivity in the high frequencies for O3

- A fundamental step towards the Frequency Dependent Squeezing

Arrived on site in January 2018 -> installation and commissioning

Mode Matching Telescope

Faraday Isolators

Main Target Requirements

- Measure 3-4 dB of squeezing in the ITF -> improve the sensitivity

- Optical losses < 32 %
- Squeezing ellipse angular jitter < 30 mrad
- PLL residual phase noise < 20 mrad

Phase-Locked Loops

2 PLLs:

- with the Virgo main laser
- between the 2 squeezer lasers

RMS Residual phase noise ~ 5 mrad -> well below the requirements

Automatic Alignment Loops

Slow Automatic Alignment Loop engaged

Some drawbacks: sensed only ITF misalignments; maximum sensing rate ~ 5 Hz; residual angular motion observed **Fast Automatic Alignment Loop in progress** Sensing matrix measurements, actuation matrix implementation

Coherent Control Loop

- CC bright beam 7 MHz shifted wrt the ITF carrier
- Beat note between the ITF carrier and 7 MHz shifted CC beam sensed by the dark port photodiodes
- After digital demodulation and DA conversion, correction signal sent to the RF generator (pll reference)

CCL engaged BUT still some phase jumps and too high drift and jitter

Results (i)

Injection of different levels of squeezing

Optical Losses ~ 45 % Squeezing Ellipse Angular Jitter ~ 60 mrad

Results (ii)

05-12

05-13

1233402916.0000 : Feb 5 2019 11:54:58 UTC

05-14h

12

Summarizing

- Measure of 3 dB of squeezing done 🙂
- Improvement of the sensitivity -> Almost constant gain of 2 Mpc 🙂
- Phase-Locked Loops engaged within the requirements 🙂
- Slow Automatic Alignment Loop engaged 🙂
- Coherent Control Loop engaged 🙂
- Automation of the squeezer tested and ready 🙂
- Performances dominated by optical losses and dark noise 😕
- Some jumps in the optimal phase 😕
- Some drift of the squeezed beam, adding also scattered light noise 😕

What's next?

- Stabilization Loop to keep the optimal phase
- Engage the Fast Automatic Alignment Loop
- Remove the remaining scattered light noise sources
- Install High Quantum Efficiency photodiode with the corresponding low noise electronics
- Fine tuning of the squeezing injection
- Integration of the automation of the squeezing in the lock acquisition