

The Angular Control for Virgo

Julia Casanueva INFN Pisa

Introduction

Working point

Working point of maximum sensitivity

Seismic noise

- → Dominant at low frequencies →
 Superattenuator -
 - → Factor 10¹² of attenuation above 10Hz

Residual seismic noise is **TOO HIGH** moves the mirrors both angularly and longitudinally \rightarrow individual working point is crossed in a random way

- Active control is necessary to keep the ITF at its working point
 - <u>4 longitudinal</u> DOFs (lengths) + <u>frequency</u> <u>stabilization</u> (laser)
 - <u>16 angular</u> DOFs

Active control: feedback loop

Control loops are composed of: $Plant \rightarrow Error signal \rightarrow Control Filter \rightarrow Actuator \rightarrow Plant$

Angular degrees of freedom

Optical Axis

→ An optical cavity is aligned when the input beam and the optical axis are aligned so that no HOMs are generated → all the power couples into the cavity

 \rightarrow Optical axis \rightarrow line that intersects both centers of curvature

What happens in the presence of a misalignment?

Angular control: HOMs

→ Laser beam follows the paraxial approximation → described by a set of <u>Hermite Gauss modes</u>

Shift of the optical axis

$$E(x + \delta_x) \approx A \cdot \left[H_0(x) + \frac{\delta_x}{w_0} \cdot H_1(x) \right]$$

Tilt of the optical axis

$$E(x + \alpha_x) \approx A \cdot \left[H_0(x) + i \cdot \frac{\alpha_x}{\theta_d} \left(H_1(x)\right)\right]$$

- Higher Order Modes decrease the power of the fundamental mode AND they can couple inside the cavity
- → Misalignment changes the length of the cavity → <u>angular</u> <u>movements couple to the longitudinal control</u>

Interferometer angular DOFs

→ There are (6 mirror 8 🚅 $\otimes =$ angular DOFs + 2 input beam angular DOFs) x 2 symmetry planes = 16 Comm+ Diff+ \odot \odot **DOFs** in total lacksquare ∞ \odot **BS** mirror tilt $\otimes =$ \otimes **PR** mirror tilt Cavities tilt (+): Comm and **Diff** Comm-Diff- \otimes \otimes Cavities shift (-): **Comm** and **Diff** \odot \odot \otimes \otimes

Angular error signals

Pre-stabilization

- Residual movement is too high to engage any control
 - → Longitudinal movement → Dampers
 - → Angular movement → Local controls (Control up to ~3Hz)
- Local controls use optical levers to monitor the angular position of the mirror with respect to the tower
 - → Allow a control of ~0.5urad rms
 - → Slow drifts (~1urad per hour)

Laser

Mechanical modulation

Global signal → information on Beam/Mirror alignment

- **Target** \rightarrow center the beam into the optics
 - Add a *tilting oscillation* to *each angular DOF* of *each mirror* at a different frequency $\omega_{\alpha}^{(DOF)}$
 - When the **optical axis is miscentered** there is a $\Delta L_{\alpha} \rightarrow$ frequencies $\omega_{\alpha}^{(DOF)}$ appear on the longitudinal correction

- The error signal is built by demodulating the longitudinal correction @ $\omega_{\alpha}^{(DOF)}$
- The **input beam alignment** impacts the power coupling inside the cavity \rightarrow error signal uses the P_{tr} by the cavity

Mechanical modulation @ North arm

Mechanical modulation @ North arm

To align the arm cavities we use the mechanical modulation previously described

Phase modulation: Pound-Drever-Hall technique (PDH)

- Error signal: provides information about how far is the cavity length from the resonance position.
- Phase modulation: create <u>sidebands</u> around the Laser carrier (ω_0) at ± the modulation frequency, Ω.
 - → Error signal → beat note between carrier and nonresonant sidebands
 - Demodulation: select the interesting term
 - Two signals: in-phase (P) and in-quadrature (Q)
 Julia Casanueva

Phase modulation: PDH technique

Phase modulation

Global signal → information on Beam/Mirror alignment

- Phase modulation → measure the spatial beam phase distribution (Ward's technique)
 - Reflected field contains the <u>beat note</u> between the <u>HOMs</u> produced and the <u>fundamental mode</u> (carrier and sidebands)
 - → Demodulation is needed to select the interesting term, Ω
 - → A special photodiode is needed since $H_0(x) \perp H_1(x)$ and integrating over the whole surface $\rightarrow 0$

Quadrant photodiode (QPD) is divided in sectors \rightarrow the difference between them gives us information on the 1^{st} order mode ONLY!

Phase modulation

- Phase modulation → measure the spatial beam phase distribution (Ward's technique)
 - → After demodulation ALL information is on one projection → angular DOFs are mixed!!
- Two QPDs are necessary:
 - Near Field → at the waist of the beam (plane-wave)
 - Far Field → radius of the beam converges to z (distance from the waist)

Actuation

Driving of angular DOFs

- → The two mirrors of the cavities in the arms are curved → angular DOFs do not correspond to the mirror angular positions
 - It is necessary to find the <u>driving that decouples the angular</u>
 <u>DOFs</u> → slope of the figure

Julia Casanueva

Tilt / Shift sensitivity

- → Arm cavities of Advanced Virgo → more sensitive to Tilt than to Shift
 - → Important in terms of requirements → more stringent for tilt DOFs

Radiation pressure

→ When there is a lot of power circulating inside a Fabry-Perot cavity → Radiation pressure

→ Optical spring appears → Modifies the angular mechanical response of the mirrors

Angular control strategy in Advanced Virgo

Angular control strategy

Alignment experiments **slow drifts** (~ tenths of minutes) \rightarrow <u>not</u> <u>critical during control acquisition</u>

Alignment in Dark Fringe

1) Define the ITF plane \rightarrow 3 points are needed (mechanical modulation)

- Working point of the Shift of the cavities (-) is defined by the <u>center</u> of the End Mirrors (up to ~30mHz) → LCs up to 3Hz
- COMM(+) is defined using the c<u>enter of the WI mirror</u> → B5 QPD DC up to 3Hz
- 2) The rest of DOFs are controlled using QPDs
- PR tilt → B5 QPD @ 56MHz (I)
- BS tilt → B5 QPD @ 56MHz (Q)
- DIFF(+) → B1p QPD
 @ 56MHz
- PR translation (Input Beam tilt) → B2 QPD
 @ 8MHz

Alignment in Dark Fringe

Once the alignment is engaged the sidebands power stabilizes

Angular Control @ Virgo

Thank you!