

# FEED-FORWARD NOISE CANCELLATION IN VIRGO

#### **DIEGO BERSANETTI**

INFN - Sezione di Genova

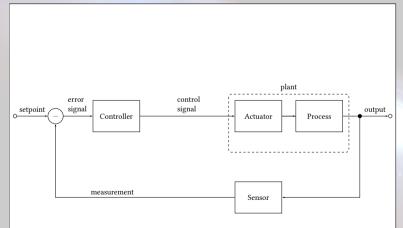
VIR-0015A-19

**1st CA17137 Conference** 

Jan 14th, 2019

1 Introduction on Feed-Forward Techniques

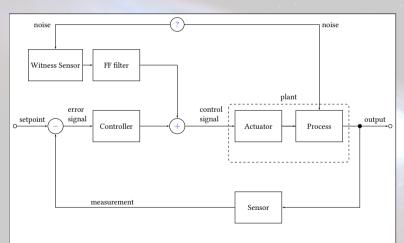
2 Feed-Forward in Virgo #1: 50 Hz Noise Subtraction


3 Feed-Forward in Virgo #2: The ALPHA Subtraction

#### 1 Introduction on Feed-Forward Techniques

2) Feed-Forward in Virgo #1: 50 Fe Noise Subtraction

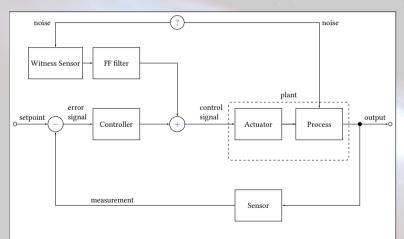
3) Feed-Forward in Virgo #2: The APPHA Subtraction


### Feed-Back and Feed-Forward (1)



#### **Feed-Back System:**

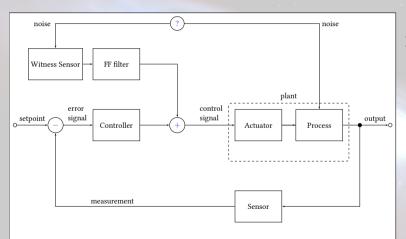
- It is used to control an input variable
- It tracks the changes of the input variable
- It defines the working point of the system
- It has strict constraints (stability, tracking, regulation, etc...)


# Feed-Back and Feed-Forward (2)



#### **Feed-Forward System:**

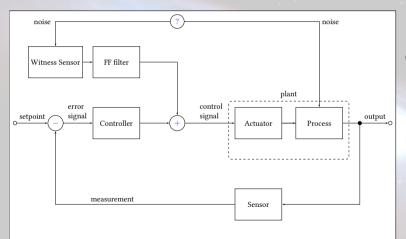
- It reduces a noise
- It needs a witness
- The input is not kept *under control*
- The correction is *static* over time
- It is less constrained than feedback
- It needs very accurate modeling


# What is a Feed-Forward System? (1)



It needs a *witness* of the noise we want to reduce:

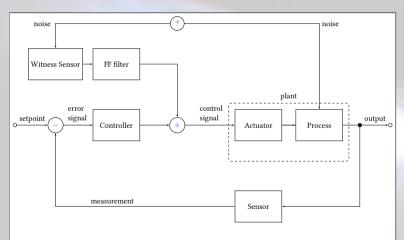
- Our system must be set up in a way to be able to read the external disturbance *independently*
- Such witness must possibly have no other information
- The witness must be reliable over time


# What is a Feed-Forward System? (2)



Input is not kept *under* control:

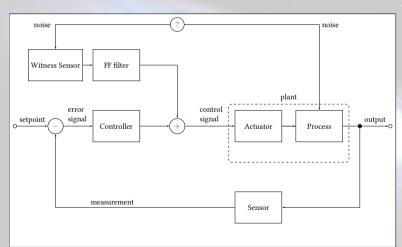
- There is no feedback
- There is no measurement of the input variable
- The input variable is an external disturbance, not the physical quantity we are interested in


### What is a Feed-Forward System? (3)



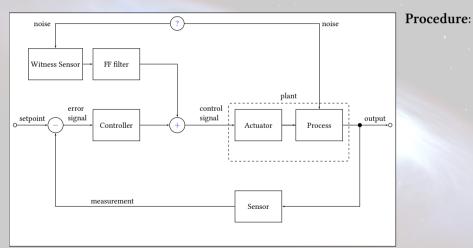
#### Correction is *static* over time:

- We have a static filter (as in the feedback case)
- The witness is out of loop by definition
- The effect is not a *control*, but rather a *subtraction*


# What is a Feed-Forward System? (4)

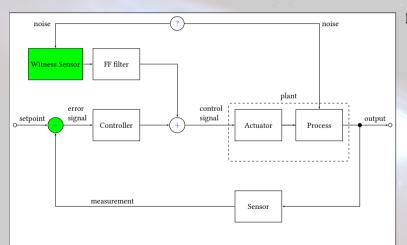


Less constrained than feedback:


- There are no requirements (phase margin, etc...)
- A feed-forward is not "stable" or "unstable"
- The witness and the model define the performance
- The effect is the *reduction* or *amplification* of noise

# What is a Feed-Forward System? (5)

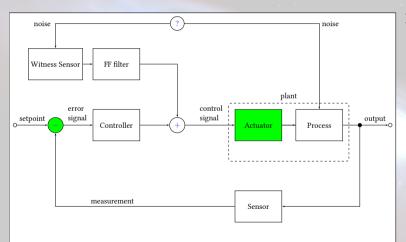



It needs a very accurate modeling:

- The relationship between noise and witness must be well known
- The relationship between noise and target must be well known
- A precise model is needed in order to build a performing filter
- Both *amplitude* and *phase* are very important



D. Bersanetti (INFN Genova)


#### VIR-0015A-19 - 1st CA17137 Conference



#### **Procedure**:


• Measure the *transfer function* TF<sub>A</sub> between witness and target

D. Bersanetti (INFN Genova)



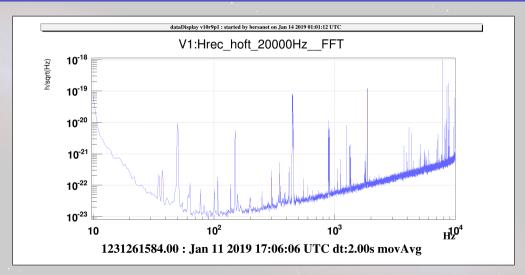
#### **Procedure**:

- Measure the *transfer function* TF<sub>A</sub> between witness and target
- Measure the *transfer function* TF<sub>B</sub> between target and actuation (closed loop transfer function)



#### **Procedure**:

- Measure the *transfer function* TF<sub>A</sub> between witness and target
- Measure the *transfer function* TF<sub>B</sub> between target and actuation (closed loop transfer function)


$$\mathrm{TF}_{\mathrm{FF}} = - rac{\mathrm{TF}_{\mathrm{A}}}{\mathrm{TF}_{\mathrm{B}}}$$

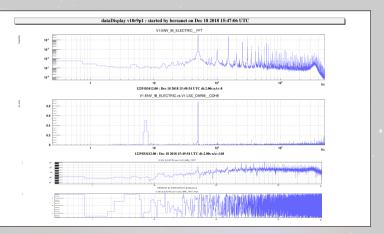
1) Introduction on Feed-Forward Techniques

2 Feed-Forward in Virgo #1: 50 Hz Noise Subtraction

3) Feed-Forward in Virgo #2: The ArpuA Subtraction

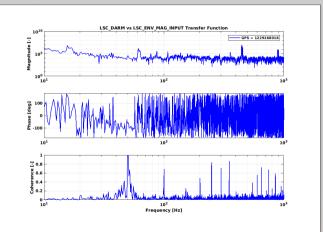
### 50 Hz Noise in Virgo (1)




### 50 Hz Noise in Virgo (2)

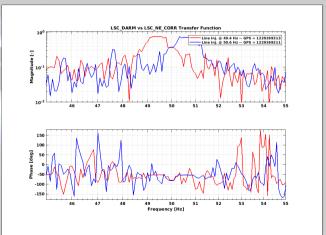
• Known source of noise

• Source is the mains lines


• Source can not be removed

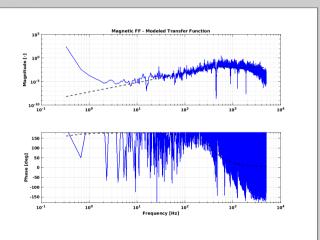
• Effect can be subtracted




# 50 Hz Feed-Forward: TF between Witness and Target

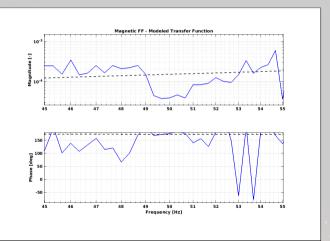
- The first step is the measurement of TF<sub>A</sub> between witness and target
- The relationship must be stable over time
- A constant phase between the two *in the band of interest* is a key ingredient



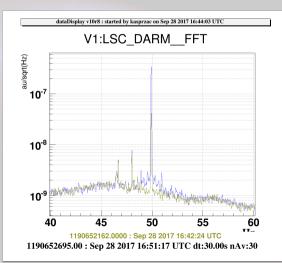

# 50 Hz Feed-Forward: Closed-Loop Transfer Function

- The second step is the measurement of TF<sub>B</sub> between target and actuation
- This is the Closed Loop Transfer Function of DARM
- Noise must be *injected* in the loop to do a good measurement
- This also determines the inherent phase delay of the loop




# 50 Hz Feed-Forward: Computation of the Feed-Forward Filter

- $TF_{FF} = -\frac{TF_A}{TF_B}$
- The Feed-Forward filter can now be computed
- In simple cases (this one) it can be done by hand (phase-tuning needed only in a narrow band)
- In complicated cases (the next one) frequency-domain fitting (e.g., vectfit) is needed



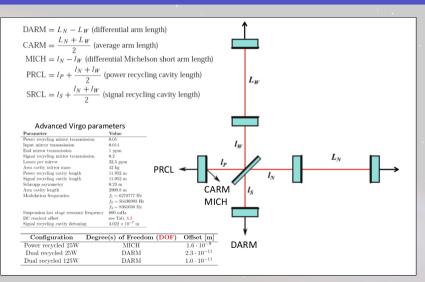

# 50 Hz Feed-Forward: Computation of the Feed-Forward Filter

- $TF_{FF} = -\frac{TF_A}{TF_B}$
- The Feed-Forward filter can now be computed
- In simple cases (this one) it can be done by hand (phase-tuning needed only in a narrow band)
- In complicated cases (the next one) frequency-domain fitting (e.g., vectfit) is needed



# 50 Hz Feed-Forward Running Online




- Online subtraction proven successful in the Post-02 Commissioning
- Reduction of the 50 Hz line of a factor  $\simeq 10$
- Sidebands also decreased
- Re-implementation (different witness/actuation path) currently ongoing for O3

1) Introduction on Feed-Forward Techniques

2) Feed-Forward in Virgo #1: 50 Fiz Noise Subtraction

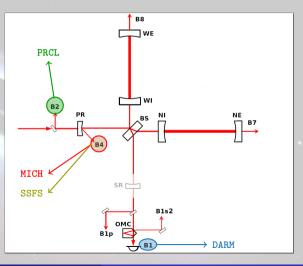
**3** Feed-Forward in Virgo #2: The ALPHA Subtraction

### Longitudinal Degrees of Freedom (1)



D. Bersanetti (INFN Genova)

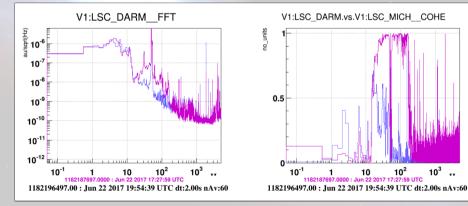
#### VIR-0015A-19 - 1st CA17137 Conference


### Longitudinal Degrees of Freedom (2)

- Four longitudinal Degrees-Of-Freedom controlled:
  - DARM controlled with B1\_DC

MICH controlled with B4\_56MHz\_Q

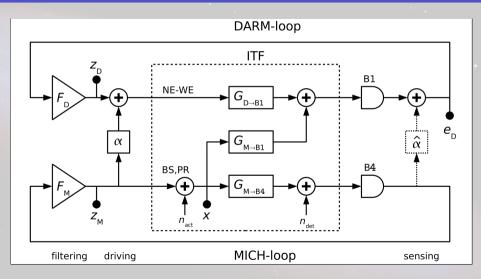
SSFS controlled with B4\_56MHz\_I


- PRCL controlled with B2\_8MHz
- Problem: the interferometer is not a diagonal system!



# $MICH \rightarrow DARM$ Coupling

- Strong effect on DARM
- Frequency-dependent behaviour


- Most of the coupling is *linear*
- Online subtraction is possible



10<sup>3</sup>

--

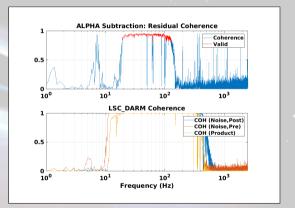
### Аlpha Technique: Mechanism



### Alpha Technique: Definitions

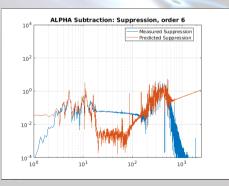
• In principle the coupling factor is simply

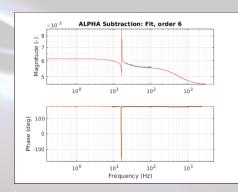
$$\alpha = -\frac{G_{\mathrm{M}\to\mathrm{B1}}}{G_{\mathrm{D}\to\mathrm{B1}}}$$


- But we cannot measure  $G_{M \rightarrow B1}$  directly
- In the real ITF, we have instead:

$$\alpha_{\text{new}} = \alpha_{\text{old}} - \frac{\text{TF}_{\text{M}\to\text{B1}}}{G_{\text{Dcl}} \cdot \text{TF}_{\text{D}\to\text{B1}}} = \alpha_{\text{old}} - \frac{\text{TF}_{\text{M}\to\text{B1}}\left(1 - \text{TF}_{\text{Dpost}\to\text{Dpre}}\right)}{\text{TF}_{\text{D}\to\text{B1}}}$$

# Аlpha Technique: Procedure

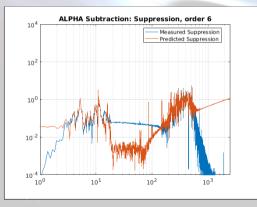

Procedure:


- Noise injections on both DARM and MICH
- Important: the DARM/MICH coherence should be high enough, but *without* saturating any of the actuators
- Calculate *offline* the new ALPHA, by computing the TFs and fitting the new filter
- Important: ALPHA is frequency dependent, so the frequency window and the frequency dependence of the weights are impacting
- Upload the new Alpha filter in the online software



# **ALPHA** Technique: Evaluation

- Several fits are made for different orders
- The predicted new suppression is computed and compared to the current one
- Example of filter update after a change in the MICH loop made the subtraction under-performing

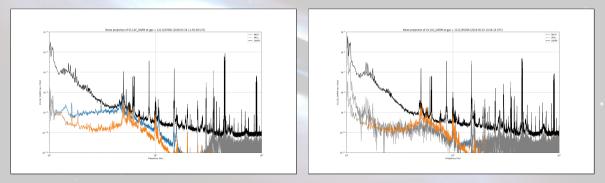





### Alpha Technique: Validation

• With the new filter, another set of noise injections will validate the performance

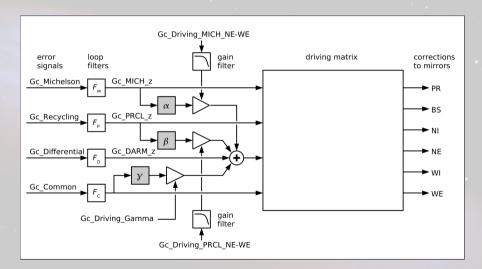
• Comparison between the predicted suppression and the measured one






# Аlpна Technique: Longitudinal Noise Budget

#### • Contribution from MICH gets lower


#### • Coherence drops as well



#### Old Alpha filter

#### New Alpha filter

#### Alpha, Beta & Gamma



# Thank You!