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Introduction

• Motivation:	
– noise	couplings	in	GW	detectors	are	often	non-stationary
– Coupling	changes	can	often	be	traced	to	”slow”	motions	of	the	interferometer	

(IFO)	as	for	example	angular	degree	of	freedom	fluctuations
• Examples:	

– SRCL	noise	coupling	
at	LIGO	Hanford,	

– O2	jitter	noise,	
– 40m	lab	seismic	

feed-forward
• Goal:	

– develop	a	technique	
to		identify	and	
efficiently	subtract	
non-stationary	noise	
couplings

• By-product:
– a	parametric,	stable

IIR	noise	subtraction	
(a-la	Wiener	filter)
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Previous	attempts	with	neural	networks

• Alberto	Iess’	work	based	
largely	on	[dn]2:	denoising
with	deep	neural	networks
– LIGO-G1800334
– https://git.ligo.org/
gabriele-vajente/dn2

• Also	DeepClean
– LIGO- G1801716

• Works	with	simulated	data	
fairly	well

• Issue:
– Difficult	to	train	(mixture	of	

slow	dynamics	and	fast	
sampling)

– Interpretability 3



Mathematical	foundations
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• h(t):	target	signal,	what	we	want	to	clean	(example:	GW	strain)
• s(t):	noise	witness	signal,	i.e.	a	measurement	of	the	noise	that	

couples	into	h(t),	through	modulated	transfer	functions	
(example:	SRCL	control	signal)

• xi(t):	a	set	of	auxiliary	signals	that	witness	the	coupling	
modulation	(example:	angular	degree	of	freedom	fluctuations)

• Assuming	that	xi(t)	varies	on	time	scales	much	slower	than	the	
noise	s(t)

• The	stationary	coupling	is	modeled	with	a	transfer	function	H
• The	non-stationary	couplings	are	modeled	by	assuming	the	

noise	couples	through	(many)	stationary	transfer	functions,	
each	one	modulated	by	one	of	the	witness	signals ht
tp
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Implementation	/	1

• Frequency	domain	approach
– Find	the	optimal	solution,	independently	for	each	frequency	bin	

(frequency-domain	a-causal	Wiener	filter	[1])
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Modulated	signals Noise	prediction

Residual	after	subtraction

Minimize	PSD	of	residual Optimal	solution
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[1] Wiener, Norbert (1949). Extrapolation, Interpolation, and Smoothing of Stationary Time Series. New York: Wiley.



Example:	SRCL	noise
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Frequency	domain	direct	solution
SRCL	noise	(injected)	modulated	
by	angular	degrees	of	freedom
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Quiet	DARM	data,	
no	noise	injection

(reference)

SRCL	noise	injected



Example:	SRCL	noise
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Title:	what	is	modulating	SRCL	noise
Blue:	absolute	value	of	transfer	function	𝛂
Orange:	phase	of	transfer	function	𝛂 ht
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Frequency	domain	approach

Pros
• Fast
• Quadratic	optimization
• Guaranteed	optimal	

solution

Cons
• Every	bin	is	independent
• Huge	number	of	

parameters	>	overfitting
• No	guarantee	that	the	

solutions	are	physically	
realizable	filters	in	time	
domain	(causality,	
stability,	etc…)
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Parametrized	approach

• Describe	each	transfer	function	using	a	(non-linear)	
parametrized	form

• Laplace	domain:

• Define	a	frequency-integrated	cost	function

• Use	gradient-based	optimization	algorithms
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Parametric	approach

Pros
• “Smooth”	transfer	functions
• Small	number	of	

parameters	
• No	overfitting

Cons
• No	guarantee	of	convergence	

to	optimal	solution
• No	guarantee	that	the	

solutions	are	physically	
realizable	filters	in	time	
domain	(causality,	stability,	
etc…)

• Parameters	are	poorly	scaled
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Additive	second	order	stages

• How	to	enforce	stability	and	improve	the	coefficient	scaling
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Poles	are	stable	

if	and	only	if
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Implementation	/	2

• Parametrize	with	sum	of	second	order	stages
• Enforce	stability	by	positive	mapping	of	a	coefficients,	

for	example																															or	using	bounded	functions	
such	as	a	scaled	sigmoid	(allowing	for	limit	on	maximum	
and	minimum	pole	frequencies)

• Gradient	can	still	be	computed	directly
• Use	gradient-based	unconstrained	minimization	methods:	

– ADAM	(inspired	from	deep	learning)

• With	small	additional	re-parametrization	one	can	also	
enforce	that	the	Q	of	all	poles	is	not	large.
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Example:	SRCL	noise
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Example:	SRCL	noise
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Example:	SRCL	noise
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Title:	what	is	modulating	SRCL	noise
Blue:	absolute	value	of	transfer	function	𝛂
Orange:	phase	of	transfer	function	𝛂
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Example:	SRCL	noise

• After	stationary	
noise	subtraction:	
still	large	non-
stationary	noise

• Non-stationary	
noise	subtraction	
improves	a	lot

• There	is	still	some	
non-stationarity	
left:	modulations	
that	are	not	
captured	by	the	
angular	signals
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IIR	filter	
coefficients

Bilinear	
transform

Time	domain	implementation

• Or	parametrize	directly	in	z-domain
using	starred	transform

• Poles	are	stable	(inside	the	unit	
circle	in	z-plane)	if	and	only	if
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Additive	SOS	
coefficients

s-domain	
transfer	function
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O2	noise	subtraction	at	LIGO	Hanford

• During	O2,	Hanford	
sensitivity	limited	by	
input	beam	jitter	
(mostly)

• Solved	by	offline	noise	
subtraction

• Using	signals	witnessing	
beam	jitter	(and	other	
noises)

• Performed	in	frequency	
domain	
(a-causal	Wiener	filters)

• Worked	very	well
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From:	arXiv:1806.00532



Parametric	time-domain	subtraction

• Solution	that	uses	
IIR	filters	in	time	
domain:	stable	
and	causal

• Same	(maybe	
a	bit	better)	
performance	
as	O2	offline	
subtraction

• IIR	filters	could	
be	implemented	
in	real	time	if	
desired

19LIGO-T1800552



Some	of	the	transfer	functions
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Title:	noise	source
Blue:	absolute	value	of	transfer	function	𝛂
Orange:	phase	of	transfer	function	𝛂
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Other	applications	/	next	steps

• Tested	also	on	seismic	
feed-forward at	the	
40m interferometer

• Other	possible
applications	of	the
non-stationary	
subtraction:
– Angular	noises
– Environmental	noises
– Intensity	and	frequency	noise

• Next	steps:	
– This	algorithm	can	be	made	adaptive:	starting	from	an	estimate	of	the	

transfer	functions,	refinements	can	be	computed	from	cross-spectral	
densities	(see	LIGO-T1800525-v3)
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40m	PRM	pitch	motion	
feedforward	from	seismometers	
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https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=45403

Characterizing	SRCL	non	stationary	noise	coupling
https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=45508

Time-domain	non-stationary	subtraction
https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=45803

SRCL	noise	subtraction
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SRCL	non-stationary	noise	coupling

Code	available	on	git.ligo
https://git.ligo.org/ gabriele-vajente/nonsens


