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Abstract of the talk

It is possible that multisensory fusion tecjniques applied by means of networks of
mobile robotics platforms equipped with seismometers and other sensors may
facilitate the understanding and filtering of NN (<30 Hz), acoustic and other noise. We
will outline some preliminary ideas.

We will also more broadly discuss possible application of robots, and of the 'robotics
mind-set', in the field.
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» Robotics ‘waves’

» Newtonian Noise (a naive view)
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* Preliminary ldeas for noise characterization and mitigation in GW detection

» Possible application of robots, and of the 'robotics mind-set’ for GW detection
» Bolder Approaches
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‘Caveat’

THE

PRAIRIE TRAVELER.
AHAND-BOOK FOR

OVERLAND EXPEDITIONS.

WITH MAPS, ILLUSTRATIONS, AND ITINERARIES OF
THE PRINCIPAL ROUTES BETWEEN THE
MISSISSIPPI AND THE PACIFIC.

BY RANDOLPH B. MARCY,
CAPTAINU. S. ARMY.

PUBLISHED BY AUTHORITY OF THE WAR DEPARTMENT

1859.

ROUTES TO CALIFORNIAAND OREGON

'EMIGRANTS or others desiring to make the
overland journey to the Pacific should bear in mind
that there are several different routes which may be
traveled with wagons, each having its advocates in
persons directly or indirectly interested in attracting
the tide of emigration and travel over them.

Information concerning these routes coming
from strangers living or owning property near them,
from agents of steam-boats or railways, or from
other persons connected with transportation
companies, should be received with great caution,
and never without corroborating evidence from
disinterested sources'

From 'The Prairie Traveler', R. B. Marcy,
Captain, U.S.A, 1859




Older and newer attempts

L 4

Juanelo Torriano alias Gianello della
Torre, (XVI century) a craftsman from

Cremona, built for Emperor Charles V a
mechanical young lady who was able to
walk and play music b the strings

of a real lute. é = B
A O <N

Hiroshi Ishiguro, early XXI century

Director of the Intelligent Robotics Laboratory, part of the Department j<as>]
of Adaptive Machine Systems at Osaka University, Japan



The second wave

Data are very important, but they are not all in a digital economy. ACTIONS, MOBILITY and STRENGTH are
also needed! Robotics: a great opportunity to innovate, connect and transform. Robotics is technology
and business, but it is also creativity and fun!

tame L]

“[...] The size of the robotics market is projected to =
grow substantially to 2020s. This is a global market , =

and Europe’s traditional competitors are fully ' LS '*“ i: 55%
-]
.
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- 60%
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engaged in exploiting it. Europe has a 32% share of ) T
the industrial market. Growth in this market alone is 2N i
estimated at 8%-9% per annum. Predictions of up to = o o

- 50%
- 45%

25% annual growth are made for the service sector 2 R S dFe.
where Europe holds a 63% share of the non-military

market. [...]"

- 35%

- 30%

“[...] From today’s €22bn worldwide revenues,
robotics industries are set to achieve annual sales of
between €50bn and €62bn by 2020. [...]”

—L 25%

v v T v v v v‘; v v
Robotics is one of the 12 disruptive technologies identified by
McKinsey

Rethinking Robotics for the Robot Companion of the future




The second wave: Robotics: a great opportunity to
iInnovate, connect and transform
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The second wave: the success stories

DARPA (American Defense Advanced Research Projects Agency) challenges have demonstrated
how current robots are becoming more accurate, fast and dexterous in structured and
unstructured environments.
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Not everything worked as expected!
The second wave: the current approach shows some limitations

On the other hand the debriefing of DARPA DRC shows clearly that humanoid robots are still far
from the required level of capabilities in fact many metrics, such as time-to-completion,
are highly application or task specific.

According to H.Yanco a minimum of 9 people were needed to
teleoperate latest DRC’s robots!!!

Rethinking Robotics for the Robot Companion of the future




Pursuing new frontiers: @
The robotics bottleneck

Today, more functionality means:
* more complexity, energy, computation, cost
» less controllability, efficiency, robustness, safety

Rethinking Robotics for the Robot Companion of the future



The Robotics waves
Third wave

Sustainable industrial
leadership and ubiquitous
societal impact
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SCIENCE ROBOTICS

Science - Science

RO%CS Robotics
Vol 1, Issue 1

06 December 2016

Science Robotics ... I

Home News Journals Topics Careers

Scence Science Advances  Scence immunclogy  Scence Robotiks oence Sgnaing  Science Translational Medcine

Softnessisa
strength

Soft robotics expand the
boundaries of robot abilities

Massms Brega/Kepach Production
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The marvellous progress of Robotics and Al...'Look
Ma, No Hands' syndrome?

Tuft Softworm Inflatable robotic arm

R
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L == >

o= -
T
Rehabilitation glove Octobot

Entirely soft



Outline of the talk

» Newtonian Noise (a naive view)
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Newtonian Noise (a naive view),
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Newtonian Noise (a naive view),




Netwonian Noise
A naive view

Main Issue: Rayleigh waves (and lacking knowledge of underground mass distribution)

Problem: model underground and surface mass distribution and land motion
(same issue with the atmosphere) to characterize and predict Rayleigh waves



Other sources of noise:
‘Environmental’

l.e.

* Acoustic

- EM

» Others...



Outline of the talk

* Multisensory Fusion in Robotics



Multisensory Data Fusion in Robotics

Multisensor data fusion is the process of combining observations from a number of
different sensors to provide a robust and complete description of an environment or
process of interest.

Data fusion finds wide application in many areas of robotics such as object
recognition, environment mapping, and localisation.

From: H. Durrant-Whyte, T. C. Henderson,

Multisensor Data Fusion,

Part C, Chapter 25, in B.Siciliano, O. Khatib (eds.) Springer Handbook of
Robotics, 2008



Multisensory Data Fusion in Robotics

Principles
; : ot , : Pz | x)P(x)
It’s essentially an application of Bayes’ rule: P(x|z)= P
Z
assuming conditional independence: P(z,,.-- .z, |x)= P(z;|x)--- P(z, | X)

= 1_[ P(zi|x).
i=I

We get the multisensory expression: P(x|Z")=CP(x) ]_[ P(z; | x),

i=1

and its recursive form: k. P |x)P(x| ZFT)
Px|Z") =
P(zk | Zk_l)



Multisensory Data Fusion in Robotics
Methods

« Bayes’' Rule

» Probabilistic Grids

« The Kalman Filter (plus Extended Kalman Filters, Information Filters, etc.)
« Sequential Monte Carlo Methods

« Alternatives to Probability
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Fig.25.1 Time update step for the full Bayes filter. At a time k — 1, knowledge of the state xx_; is summarised in
a probability distribution P(x;_1). A vehicle model, in the form of a conditional probability density P(xy | xx—;), then
describes the stochastic transition of the vehicle from a state x;_; at a time k — | to a state x; at a time k. Functionally,
this state transition may be related to an underlying kinematic state model in the form xx = f(xx—1, ux). The figure shows
two typical conditional probability distributions P(xy | x,—;) on the state x; given fixed values of x;_;. The product
of this conditional distribution with the marginal distribution P(xy_;), describing the prior likelihood of values of xy,
gives the the joint distribution P(xk, x¢—1) shown as the surface in the figure. The total marginal density P(xx) describes
knowledge of x; after state transition has occurred. The marginal density P(xy) is obtained by integrating (projecting) the
joint distribution P(xy, x¢_1) over all x;_;. Equivalently, using the total probability theorem, the marginal density can
be obtained by integrating (summing) all conditional densities P(xy | xx—1) weighted by the prior probability P(xx—1) of
each x;_;. The process can equally be run in reverse (a retroverse motion model) to obtain P(xx_;) from P(x;) given
amodel P(x;_; | xx)

Rethinking Robotics for the Robot Companion of the future
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Fig. 25.2 Observation update for the full Bayes filter. Prior to observation, an observation model in the form of the
conditional density P(zj | xx) is established. For a fixed value of xy, equal to x; or x;, for example, a density func-
tion P(zx | xx = x1) or P(zi | xx = x7) is defined describing the likelihood of making the observation zx. Together
the density P(zx | xx) is then a function of both z; and x;. This conditional density then defines the observation
model. Now, in operation, a specific observation z; = x; is made and the resulting distribution P(zx = xj | x;) de-
fines a density function (now termed the likelihood function) on xi. This density is then multiplied by the prior
density P(x,") and normalised to obtain the posterior distribution P(xy | zx) describing knowledge in the state after

m observation _



True state

Control at #
u(k)

y

State transition
x(k)=F(k)x(k-1)
+G(k)u(k)+v(k)

Estimation
of state

State covariance
computation

State estimate
at 1

x(k-1]k-1)

State error covariance
at 15
P(k-1|k-1)

y

v
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Measurement at #;
2(k)= H(k)x (k) +w(k)

State prediction
x(klk-1) =
F(k)x (k-1)|k-1)+ G (k) u(k)

State prediction
covariance
P(klk-1) =
F(k)P(k-1|k-1)F (k) +Q(k)

A 4

v

Measurement prediction
2(klk-1) =
H(k)x (k|k-1)

Innovation covariance
S(k) =
H (k) P(k|k—1) H' (k) +R (k)

A

A4

Innovation
v(k) = z(k)—z(k|k-1)

Filter gain
W(k) =
P(k|k-1)H'(k) S (k)

A 4

A

Updated state estimate
x(klk) =
x(k|k-1)+W(k)v (k)

Updated state covariance
P(klk) =
P(k|k-1)—W (k) S(k) W'(k)

H. Durrant-Whyte, T. C.
Henderson,

Multisensor Data Fusion,
Part C, Chapter 25, in
B.Siciliano, O. Khatib
(eds.) Springer Handboo
of Robotics, 2008

- Fig.25.3 Block diagram of the Kalman filter cycle (after Bar-Shalom and Fortmann 1988 [25.7]) _



Multisensory Data Fusion in Robotics
Methods

Current directions of interest include:

« large-scale, ubiquitous sensor systems,
* bio-based or biomimetic systems,

* medical in situ applications

» wireless sensor networks.



Multisensory Data Fusion in Robotics
Applications

» dynamic system control: the problem is to use appropriate models and sensors to control the state of a
dynamic system (e.g., industrial robot, mobile robot, autonomous vehicle, surgical robot, etc.).

« environment modeling: the problem is to use appropriate sensors to construct a model of some aspect of
the physical environment. Typical sensors include cameras, radar, 3-D range finders, IR, tactile sensors and
touch probes (CMMs), etc. The result is usually expressed as geometry (points, lines, surfaces), features
(holes, sinks, corners, etc.), or physical properties. Part of the problem includes the determination of
optimal sensor placement.



Multisensory Data Fusion in Robotics
Example: ANSER II: Decentralised Data Fusion

Decentralised data fusion (DDF) methods were initially motivated by the insight that the information or canonical form of the conventional Kalman filter data
fusion algorithm could be implemented by simply adding information contributions from observations. As these (vector and matrix) additions are
commutative, the update or data fusion process can be optimally distributed amongst a network of sensors-

The sensor is modelled directly in the form of a likelihood function. Once instantiated with an observation, the likelihood function is input to a local fusion
loop which implements a local form of the Bayesian time and observation update. Network nodes accumulate probabilistic information from observation or
communication and exchange mutual information (information gain) with other nodes in the network. This mutual information is transmitted to and
assimilated by other nodes in the network in an ad-hoc manner. The result is that all nodes in the network obtain a single integrated posterior probability
based all node observations.

The ANSER Il system consists of a pair of autonomous air vehicles equipped with infra-red and visual sensors, a pair of unmanned ground vehicles
equipped with visual and radar sensors, and additional information provided by geometric and hyper-spectral data bases, along with information input by
human operatives. The likelihood functions for singlesensor features are obtained through a semi-supervised machine learning method. The resulting
probabilities are modeled in the form of a mixture of Gaussians. Each platform then maintains a bank of decentralised, non-Gaussian Bayesian filters for the
observed features, and transmits this information to all other platforms. The net result is that each platform maintains a complete map of all features
observed by all nodes in the network. Multiple observations of the same feature, possibly by different platforms, results in an increasingly accurate estimate
of the feature location for all nodes.

The ANSER Il system demonstrates a number of general principles in Bayesian data fusion methods.

Specifically the need to appropriately model sensors through the likelihood function, and the possibility of building very different data fusion architectures
from the essential Bayesian form.



Multisensory Data Fusion in Robotics
Example: ANSER Il: Decentralised Data Fusion

Y
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Sensor node H. Durrant-Whyte, T. C.
Henderson,

Channel filter - ~ Multisensor Data Fusion,

Preprocess ;
u(k P;(z]x
and feature ) ,| Density (z]x)

Likelihood
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extraction fitting model Part C, Chapter 25, in
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Mathematical structure of a decentralised data fusion node

Rethinking Robotics for the Robot Companion of the future




Multisensory Data Fusion in Robotics
Example: ANSER Il: Decentralised Data Fusion

A synopsis of the ANSER Il autonomous network and its operation.
(a—c) Main system components;

(a) air vehicle,

(b) ground vehicle,

(c) human operative.

(d—e) The perception process;

(d) top three dimensions of features discovered from

ground-based visual sensor data along with the derived mixture model describing these feature
properties

(e) sector of the overall

picture obtained from fusing air vehicle (UAV), ground vehicle (GV) and human operator (HO)
information. Each set of ellipses

corresponds to a particular feature and the labels represent the identity state with highest
probability.

(f—i) Sequential fusion

process for two close landmarks: (f) a tree and a red car, (g) bearing-only visual observations of
these landmarks are successively

fused, (h) to determine location and identity (i).

Note the Gaussian mixture model fo

H. Durrant-Whyte, T. C. Henderson,
Multisensor Data Fusion,

Part C, Chapter 25, in B.Siciliano, O. Khatib (eds.) Springer Handbook of
Robotics, 2008




Outline of the talk

» Preliminary ldeas for noise characterization and mitigation in GW detection



NN mitigation
Preliminary ideas

» (adaptive) Modeling of the area (emi) sphere of r = 5 km by a network of robots
equipped at least with onboard seismometers which change adaptively their
positions

 Dynamic optimization of sensor positions (for example doubling those already
installed?)



Robotics
Preliminary ideas

A solution that doesn’t require the development of new basic science will be the application of methods
directly imported from multi robot systems to the design of new concept adaptive seismic sensor networks,
where the deployment and adaptive real-time reconfiguration of a mesh of robotized seismic sensor might in
principle allow a much more fine-grained and time-evolving models of the underground layers of the earth
crusts, opening new potentially very useful opportunities for research.

For example, methods of deployment and re-deployment based on the maximization of the information gain [1,
2, 3,4]

[11A. Howard, M. J. Mataric, G. S. Sukhatme, Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage
problem, Distributed autonomous robotic systems 5. 299-308, (2002)

[2] B. Shucker, J. K. Bennett, Scalable control of distributed robotic macrosensors, Distributed Autonomous Robotic Systems 6, 379-388, (2007)
[3] N. Xiong, P. Svensson, Multi-sensor management for information fusion: issues and approaches, Information fusion 3.2,163-186, (2002)

[4] A. Sanfeliu, J. Andrade-Cetto, Ubiquitous networking robotics in urban settings, Proceedings of the IEEE/RSJ IROS Workshop on Network Robot
Systems, (2006)



Decentralised Data Fusion like Anserll but with two main changes

Semi-supervised,
Reinforcement Learning?

Sensor node \ . .
/ N Deep Reinforcement Learning
Preprocess . . ) F .. 3
/= angpfe(:iture a®) > %e“s‘ty h@lx) leethIOd Channel filter P:
\ extraction tng fmode
Pi(z=z(k)|x)
Observati - :
S;ijv:téon PixlZ ,z,(k))= defmel Channel filter Q:
(multiplication manager
Density proxy measures ey Pl 2 2ih)
on a (Voronoi?) grid? )
: Time update | P(xlZ") Assimilation |
AISO '[el‘raln mOthOOgy (convolution) (multiplication) P(xt|20.2P)

and usage patterns (people,:::)

Mathematical structure of a decentralised data fusion node

Rethinking Robotics for the Robot Companion of the future




g0 the Ry,

Multisensory Data Fusion in Robotics f@
Example: ANSER II: Decentralised Data Fusion

. Quantum by INNOSEIS (a spin-out from the
National Institute for Subatomic Physics in the
Netherlands) is an ultra-light weight (< 1kg) wireless
seismic sensor network that dramatically reduces
deployment costs, while scaling up to 1 million
nodes for onshore exploration. It has be designed
for static Wireless, sensor networks. However, a
daisy-chain small network is operating in Cascina
already and no major issues prevent to mount them
on mobile platforms.

Rethinking Robotics for the Robot Companion of the future



Outline of the talk

» Possible application of robots, and of the 'robotics mind-set’ for GW detection



Robotics
Preliminary ideas

* Monitoring/Predictive maintenance
« Adaptation*
« Surveillance (if it is an issue)

* For example adaptive tuning/calibration of the test mass vibration insulation systems,
and in general of any subsystem requiring tuning/calibration



Outline of the talk

» Bolder approaches



Bolder approaches...

Towards cheap lightweight bio-inspired autonomous vehicle,
manipulation and grasping through ML/D(R)L



ML and D(R)L to the rescue?

The traditional ‘mechatronic’ approach to Robotics, as described
In the major textbooks on the matter:

some (typically linearized) deterministic control strategy
multi rigid body (typically heavy) kinematical structure.
sensor measures filtered by control observers.

This basic structure is underpinning the great majority of ‘blind’
robots successfully utilized by many decades in automotive

factories. @

< 69



ML and D(R)L to the rescue?

‘First Wave’ robots:
follow preprogrammed trajectories with very high accuracy and
precision
have very limited — in most cases no — sensory capabilities

They are used for welding, painting and similar tasks in the final
assembly of ‘big item’ manufactured products like cars, trucks,
washing machines etc.

In the latest couple of decades perception (vision, haptics, torque/
force sensing) and Path Planning and Object Recognition based
on various Al methods have been investigated and appli%’
many research prototypes. sy

70



ML and D(R)L to the rescue?

‘Second Wave' robots:

In the latest couple of decades we had steep progress in:
Perception (vision, haptics, torque/force sensing) and Object
Recognition,

Planning, SLAM and various Al methods

Still not good enough for ‘really open-ended’ environments...

However,

Together with loT low cost sensing and actuation they are
enabling the Industry 4.0 revolution and the deployment
driving cars Tt
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ML and D(R)L to the rescue?

- However, although already obtained results seem suitable for
application in structured or semi-structured environments such
as manufacturing facilities or hospitals, they lack robustness
and adaptivity for their application in open-ended environments
and in general the long awaited and promised applications of
service robotics (elder care, home assistance etc.).

72



ML and D(R)L to the rescue?

- A characteristic issue with the ‘traditional’ robot arms is that to

make possible linear modeling at high speeds of structures with
a non-linear dynamics you need heavy weights and as a
consequence bad ‘payload ratios’ (the payload ratio is the ratio
between the weight that a robot can move and the weight of the
robot itself, for example a ratio 10 kg vs 200-300 kgs of ‘robot
body’ weight is not uncommon). Another issue is that a rigid
structure radically limits, for example, the grasping and
manipulation capabilities of the robot.

73



ML and D(R)L to the rescue?

Reducing weights and increasing compliance lead to:

- a dramatic increase in non-linearities
- more uncertainties in the dynamics and the measures

- scene and object recognition and related point clouds
dimensionality dramatic growth

Most widely used methods are less reliable (or useless).
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ML and D(R)L to the rescue?

- Machine Learning methods have been increasingly applied in
Robotics for example Belief Space Planning

- Deep Learning methods have been recently applied to Robotics

- Solutions have been proposed, for example, leveraging on the
group regularities in the movement and local displacements of
mechanical structures

- A very radical approach is pursued by Sporns/Lungarella,
Bonsignorio and others on the basis of Theoretical Information

Science methods

;‘32“?‘
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ML and D(R)L to the rescue?

Machine Learning methods and DL methods show great promise for
robotic research and application in particular for the application to the
control of future soft bodied distributed sensing and actuation robots, were
more established methods show their inherent limitations.

Data science methods have so far not been applied in this are and may
help both modeling and control.

The problems of learning in physical natural and artificial intelligent systems
will be core issues, in particular for (partially) soft robots in the new FET-
Flagship Proof-of-concept RoboCom++ project, [9], on ‘next generation

robotics’.

3’«?/«@: ——
() o mmm—— ()
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ML and D(R)L to the rescue?

- All those issues are difficult to cope with ‘traditional methods’
while seem well suited for ‘fast’, asynchronous, reinforcement
learning schemes.

- ML and DRL methods that have been already successfully
applied in Robotics may actually be adapted and applied to GW
detectors expanding their detection capability.
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ML and D(R)L to the rescue?

Methods from GW and Data Science and the ML community may
help experimental methods and benchmarking in robotics.

- Reproducibility of results and performance evaluation
(benchmarking) are widely recognized issues in robotics

- one of the most serious reprducibility bottleneck is given by the
huge amount of data generated by even trivial robotic

experiments.
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Looking for new paths forward...
For example: Information self-structuring

Experiments:

Lungarella and Sporns, 2006
Mapping information flow
In sensorimotor networks
PLoS Computational Biology




Lungarella,
Sporns (2006)

Figure 1. Robots, Sensorimotor Interactions, and Neural Control Architecture

(A1) Roboto has a total of 14 DOF, five of which are used in the current set of experiments. Note the head-mounted CCD camera, the pan-tilt head
system (2 DOF), and the moveable left arm with shoulder, elbow, and wrist joints (3 DOF). The cbject is a red ball (1.25 inches diameter) attached to the
tip of the last joint

(A 2) Strider has a total of 14 DOF, with four legs of 3 DOF each and 2 DOF in the pan-tilt head system. Objects are red and blue blocks (1 inch cubes).
Strider is situated in an environmental enclosure with black walls.

(A3) Madame has 4 DOF, with 2 DOF in the pan-tilt system and 2 DOF for the wheels, which are both located on an axis vertical to the main body axis.
The environment is a square arena bounded by blue walls containing 20 red-colored floating spheres.

(B1) Roboto engages in sensorimotor interactions via the head system and arm movements; sensory — motor (dotted arrows), motor — sensory
(dashed arrows).

(B2) Strider engages in sensorimotor interactions via the head system, as well as via steering signals generated by the head and transmitted to the four
legs.

(B3) Madame's behavior consists of a series of approaches to colored objects and ovations. Fixations to the objects are maintained by independent
action of head and body.

(C) Neural control architecture. The architecture common to all robots is composed of color image arrays lp. /o /e color- intensity map Colecey. and
saliency map Sa/l (see text for details). The peak of the saliency map (blue cross) determines the pan-tilt camera motion and body steering. In addition,
Strider's neural system contains a value system with taste sensory inputs relayed via a virtual taste sensor (blue square in visual image) to taste neurons

(T ae av). which in turn generates reward and aversiveness signals (rew, ave). These signals are used to modulate the strengths of the saliency factors
Necer (see text for details).

DOI: 10.137 1/journal.pcbi. 0020144.g001
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Figure 3. Information Flow (Transfer Entropy) between Sensory Input, Neural Representation of Saliency, and Motor Variables in Roboto
(A1) Transfer entropy between array /g (variable S) and pan-tilt amplitude (variable M). Series of plots show maps of transfer entropy from S to M (S —
M) and from M to S (M — S) over visual space (55 X 77 pixels), calculated for offsets between —7 (“M leading S™) and +7 (S leading M™) time steps. Plots

show data for conditions “fov

and “rnd.” The gray scale ranges from 0.0 to 0.5 bits (for all plots in panels A1 and B1).

(A2) Curves show transfer entropy for five individual runs (thin lines) as well as the average over five runs (thick lines) between the single central pixel of

array Ig (S) and pan-tilt amplitude (M), for directions M — S (black) and S — M (gray).
(A 3) z-Score maps of significant image regions (plotted between z— 0 and z — 6). The z-scores are expressed as number of standard deviations above
background at time offset +1 (S — M) and —1 (M — S). Mean and standard deviation of background is calculated from transfer entropy values at

maximal time delays (—7,+7 time steps).

(B) All three panels have the same format as (A), but the neural activations of the saliency map Sal are substituted as variable S (11 < 11 neural units).
DOCI: 10.137 1/journal.pcbi.0020144.g003



Probabilistic Model Of Control

* Although it may seem strange only in recent times the
classical results from Shannon theory, have been
applied to the modeling of control systems.

 As the complexity of control tasks namely in robotics
applications lead to an increase in the complexity of
control programs, it becomes interesting to verify if, from
a theoretical standpoint, there are limits to the information
that a control program must manage in order to be able

to control a given system.
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Probabilistic Model Of Control

. louchette,
Lloyd (2004)
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Directed acyclic graphs representing a control process. (Upper left) Full control system with a sensor and an actuator. (Lower left) Shrinked
Closed Loop diagram merging sensor and actuator, (Upper right) Reduced open loop diagram. (Lower right) Single actuation channel enacted by
the controller's state C=c.




Models of ‘Morphological Computation’

In [59], the network of agents, where each word is initially represented by a subset
of three or more nodes with all (possible) links present, evolves towards an equilib-
rium state represented by fully connected graph, with only single links.
The statistical distribution, necessary to determine the information managing capa-
bility of the network of physical agents and to link to equation (2) can be obtained
from equations derived in the statistical physics of network domain. e —
From (2) it is possible to derive the relations recalled here below (these relations are
demonstrated in the appendix).

= W

K ( X ) Slog d—::d (I)
open

As told, relation (I) links the complexity ('the length') of the control program of a

physical intelligent agent to the state available in closed loop and the non controlled

condition. This shows the benefits of designing system structures whose 'basin of at-

tractions' are close to the desired behaviors in the phase space.
AHN +> AH,-AI <1(X:C) (In)

Relations (II) links the mutual information between the controlled variable and the
controller to the information stored in the elements, the mutual information between
them and the information stored in the network and accounts for the redundancies
through the multi information term A1.

Relations (IIT) links the program complexity of the controller to the information
stored in the elements, the mutual information between them and the information
stored in the network.

K(X)=AHN +3 AH, - Al (1)

Relations (IV) links the program complexity of the controller to the information
stored in the elements the mutual information between them and the information
stored in the network.

AHN :logm+Al (Iv)

max
open

These relations are quite preliminary, and perhaps need a more rigorous demonstra-
tion, but give an insight on how information is managed within a network of physical
elements or agents interacting with a given environment in a finalized way. They sug-
gest how the cognitive adaptation is at network level: in any environment niche it is
possible with small networks of highly sophisticated individual agents, like in human
societies, or with many limited autonomy individuals like in ant colonies, with a great
variety of possibilities in the middle.




Snakebot

see: Tanev et. al, IEEE TRO, 2005 @
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Maybe not GOF Euclidean space? :-)




Introduction

A+ A  A- Search this site Search

HeronRobots s

m ABOUT VISION RESEARCH PRODUCTS APPLICATIONS CONSULTANCY CONTACT

Inspired by nature,

we develop and implement advanced

breakthrough solutions designed with a
holistic approach.
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WHAT WE DO

Our Task Is To Develop New-Generation
Underwater And Manipulation Technology For
Tomorrow's Auwtonomous Robots

heronacnr

Our Future 3D Printing And Design

Despite the remarkable progress 3D printing systems are becoming
made in Robotics and Al, a number more widespread as they:are
of bottlenecks may well emerge in extremely user-friendly and

thesefields in the nearfuture. affordable.

Non-Conventional Algorithms

Controlling robot manipulators in the
real world is a highly challenging
task due to uncertainty in the

system's state estimation.




e-URoPe
ROV/AUV
Hibrid

Learn More @

development
platform

All techniques
and algorithms
will be adopted
and tested on
the e-URoPe
platform, an
ROV/AUV hybrid




s To Expand
Scientific Anad
Technical Knowledge
INn The Field Of
Underwater
Manipulation,

more generally, in marine robotics, with an eye to pursuing new

solutions which are "disruptive” at the scientific and technical level.

-
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Introduction

HLAFM

Marine Robotics Manipulation
Best Solutions. Zero Compromises.
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ARM 5E MICRO
produced by ECA Robotics
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Open Source HW Platform

GummiArm




Early trials ---

“Motion planning in the belief space for compliant behaviour of a (NB:
rigid) diver companion robot”

( on a ‘standard’ arm: ARM 5E

MICRO produced by ECA Robotics)

Enrica Zereik, Marco Bibuli, Gabriele Bruzzone, Francesco Gagliardi,
National Research Council of Italy, Institute of Marine Engeneering
Fabio Bonsignorio, Heron Robots




Problem statement

ARM 5E MICRO
produced by ECA Robotics




E BIOROBOTICS

Belief State Approach

In order to cope with the previously mentioned underwater scenario we model the possible and even significant measurements errors of the system
as linear Gaussian and we apply a belief state planning technique to reduce uncertainty and to be able to move the vehicle in the desired final
position with a given precision.

As demonstrated by \cite{c1} the assumption of maximum likelihood observation for the measurements makes possible to adopt comparatively
frugal optimization techniques in the belief space such as direct transcription and LQR (Linear Quadratic Regulation); for further details see
\cite{REFCHI11}. The state of the system is therefore the most probable state according to the acquired measurements and the performed actions.

A position in belief-space can be seen as a Gaussian PDF (Probability Density Function); an opportune planned trajectory in the belief space moves
towards a a goal position characterized by a mean value and lower variance; for example 1D motion in the belief state of a material point can be
represented as a line in the 2D mean-variance plane.

Following the approach proposed by \cite{c1} we a-priori planned a trajectory in the belief space by direct transcription method and then we apply
LQR method to stabilize the trajectory taking in account the upgrading measurements gathered by the system. The process is iterated until the
desired position with lower variance is reached. The planning is therefore performed in higher dimensional space than the state space; as
consequence we deal with a non-linear, stochastic and under-actuated dynamic (number of inputs smaller than state space dimension). The
assumption of linear Gaussian system helps to simplify the problem: it has been demonstrated by \cite{c1} that it generates reasonable behaviour in
the region near the linearization point.

In our sim;lation we model the observation on the vehicle position z €Z as a non linear stochastic function of the d-dimensional state vector d $
{x_t}\in X xeX

z,=g(x,)+w

X1 — f(’xt’ut)
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Belief State Approach

where g is a deterministic function of measurements and @ is a zero mean Gaussian noise with covariance W; dependent on the state of the system.

Two consecutive time dependent states are linked by a control action ut

X = f (xt 'ul)

where f,g are differentiable functions of xt and ut

The system model can be further simplified assuming belief state described by a Gaussian PDF
=, :P(x)=N(x/m,.X,)

and by linearization of the belief space dynamic that leads to:

X = A,(I, -mr)+f(mr’u1)

z,= C,(x,—m,)+g(f(m,,u,))+w

where $ mt is the mean of the belief state and At and $ Ct are the Jacobian matrices

_or _%
Ar - Sx (m,,u,),C, Sx (ml)

In this hypotheses it is possible to derive a series of states b.r andofaction Uz finding local minima of the cost function J by a standard SQP (Sequential
Quadratic Programming) algorithm. 12C



Belief State Approach

k " T-1

AT A\ ~T A~ ~T p~

J(bﬂ U ) = z w, (n,. Z,ni) + Z m, Om, +u, Ru,
i=1 =T

Where Q and R are weight matrices, the n;, are the unit vectors of belief space along which the optimization is
performed. ZT is the covariance matrix at the end of the segment, mtTthe value of the mean of the Gaussian of the
measures.

The actions in the belief space weight the objective to reduce and keep the relative distance from the diver with the
objective of reducing the uncertainty on the measures.

This hybrid approach aiming to blend the motion objectives with those related to the reduction of the uncertainties on the
measures seems very suitable to the underwater, in particular marine, environment where the uncertainties in the
measurements are usually relevant and a stochastic approach to control is needed, in order to achieve acceptable
robustness of the behaviors.
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Simulations
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Simulation or the Tirst scenario: the diver Is performing a task In a specific spot and the robot Is moving
in a circular path around him/her in order to monitor his/her health status and reactively respond to possible
requests coming from the diver.




Simulations
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Simulation of the second scenario: the diver is exploring the underwater environment and the robot
is asked to move in a circular path around him/her while translating in a compliant way with respect
to the diver motion.

Note that, in case the diver arrives to a stop to perform another taskin a specific spot (e.g. because
he/she has seen something interesting), the robot buddy will switch to the first scenario moving again
along a circular path around the diver.
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IntradiiIAtiAN

3D Trajectory with Decreasing
Time Evolution of State Covariance Matrix Norm
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IntradiiIAtiAN
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The Road Ahead

orking Tools I CA COST Action CA17137

COST Association COST Action

A network for Gravitational Waves, CA17137 http://www.cost.eu/COST_Actions/ca/CA17137
Geophysics and Machine Learning » Description
» Parties

The breakthrough discovery of gravitational waves on September 14,
2015 was made possible through synergy of techniques drawing from » Management Committee
expertise in physics, mathematics, information science and computing.
At present, there is a rapidly growing interest in Machine Learning (ML),
Deep Learning (DL), classification problems, data mining and
visualization and, in general, in the development of new techniques and
algorithms for efficiently handling the complex and massive data sets Proposer of the Action:
found in what has been coined "Big Data", across a broad range of Dr Elena Cuoco
disciplines, ranging from Social Sciences to Natural Sciences. The rapid
increase in computing power at our disposal and the development of
innovative techniques for the rapid analysis of data will be vital to the
exciting new field of Gravitational Wave (GW) Astronomy, on specific Administrative officer of the Action:
topics such as control and feedback systems for next-generation MslRosaICRUZSANTOS

detectors, noise removal, data analysis and data-conditioning tools.The
discovery of GW signals from colliding binary black holes (BBH) and the

General Information*

Science officer of the Action:
Dr Ralph STUEBNER

) ; y ) Downloads*

likely existence of a newly observable population of massive, stellar-

origin black holes, has made the analysis of low-frequency GW data a Action Fact Sheet

crucial mission of GW science. The low-frequency performance of Earth- Download AFS as .RTFE

based GW detectors is largely influenced by the capability of handling Memorandum of Understanding
ambient seismic noise suppression. This Cost Action aims at creating a Download MoU as PDF

broad network of scientists from four different areas of expertise, namely
GW physics, Geophysics, Computing Science and Robotics, with a
common goal of tackling challenges in data analysis and noise
characterization for GW detectors.

(Descriptions are provided by the Actions directly via e-COST.)




Summary

- HeronRobots and CNR-ISSIA (now part CNR-INR) work
together on a potentially disruptive deeply bio inspired mobile
manipulation and grasping technology especially suited for
underwater applications. To this purpose they constituted the
Joint Lab Heron@CNR (http://www.issia.cnr.it/wp/heroncnr/)

- As a first goal, we are developing a new tendon-based
manipulation system — loosely connected to an underwater
(semi) autonomous vehicle- which does not require significant
mechanical accuracies in the joints and in the limbs.

- The system will exploit morphological computation and the Lie
Group underlying structure of the arm motion. %




Summary

- The main issues with Deep (reinforcement) Learning , and in
general Machine Learning, methods when applied to robotics is

their data inefficiency.

- The learning system operates in a huge abstract state space
which consider way too many physically impossible
configurations and does not consider the underlying group
transformation structure of the possible motions.

. Our system will overcome (or at least mitigate) those limitations.

=
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Summary

- To our knowledge this is the first time that a compliant robotic
system is governed by a DRL system inherently exploiting
morphological computation and body dynamics.

- This will hopefully © allow implementing autonomous
underwater vehicle manipulation with unprecedented dexterity
at low cost.
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Bottom Line: Physics Matters!

Coping with the common underlying theoretical
issues implied by the application of ML and DL to
physical systems might have deep and wide scientific
and technological impact (for example protein
folding.. DeepMind AlphaFold!)
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Thank you!



