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Abstract of the talk 
 
It is possible that multisensory fusion tecjniques applied by means of networks of 
mobile robotics platforms equipped with seismometers and other sensors may 
facilitate the understanding and filtering of NN (<30 Hz), acoustic and other noise. We 
will outline some preliminary ideas. 
We will also more broadly discuss possible application of robots, and of the 'robotics 
mind-set', in the field. 

      

   



 
Outline of the talk 
 
•  Robotics ‘waves’ 
•  Newtonian Noise (a naïve view) 
•  Multisensory Fusion in Robotics 
•  Preliminary Ideas for noise characterization and mitigation in GW detection 
•  Possible application of robots, and of the 'robotics mind-set’ for GW detection 
•  Bolder Approaches 
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‘Caveat’
    ROUTES TO CALIFORNIA AND OREGON  

    'EMIGRANTS or others desiring to make the 
overland journey to the Pacific should bear in mind 
that there are several different routes which may be 
traveled with wagons, each having its advocates in 
persons directly or indirectly interested in attracting 
the tide of emigration and travel over them. 

     Information concerning these routes coming 
from strangers living or owning property near them, 
from agents of steam-boats or railways, or from 
other persons connected with transportation 
companies, should be received with great caution, 
and never without corroborating evidence from 
disinterested sources' 

 From 'The Prairie Traveler', R. B. Marcy, 
Captain, U.S.A, 1859 



Older and newer attempts
Juanelo Torriano alias Gianello della 
Torre, (XVI century) a craftsman from 
Cremona, built for Emperor Charles V a 
mechanical young lady who was able to 
walk and play music by picking the strings 
of a real lute. 

Hiroshi Ishiguro, early XXI century  
Director of the Intelligent Robotics Laboratory, part of the Department 
of Adaptive Machine Systems at Osaka University, Japan 
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The second wave 
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Data are very important, but they are not all in a digital economy. ACTIONS, MOBILITY and STRENGTH are 
also needed! Robotics: a great opportunity to innovate, connect and transform. Robotics is technology 

and business, but it is also creativity and fun! 

“[...] The size of the robotics market is projected to 
grow substantially to 2020s. This is a global market 
and Europe’s traditional competitors are fully 
engaged in exploiting it. Europe has a 32% share of 
the industrial market. Growth in this market alone is 
estimated at 8%-9% per annum. Predictions of up to 
25% annual growth are made for the service sector 
where Europe holds a 63% share of the non-military 
market.  […]” 

 
“[…] From today’s €22bn worldwide revenues, 

robotics industries are set to achieve annual sales of 
between €50bn and €62bn by 2020. […]” 

Robotics is one of the 12 disruptive technologies identified by 
McKinsey 
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The second wave: Robotics: a great opportunity to 
innovate, connect and transform 
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Robotics market domains 

ICT enabling components 
and technologies, e.g.,  

MEMS, 4G, 5G 
•  The web and IoT pull 

new robotic applications 
•  Robotics expands the 

boundaries of the Web 
and of IoT 

•  The Web is an 
‘infrastracture’ of future 
robotics 

•  Robotics integrates 
enabling ICT components 

•  Robotics will drive the 
development of new ICT 
components 

•  Robotics pulls the 
development of next 
generation  
communication networks •  Creating new jobs in robotics

•  Creating new industrial opportunities (and jobs) 
• Taking advantage of robotics and automation to enable GDP growth

Robots 
and Jobs 
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The second wave: the success stories 

18 

DARPA (American Defense Advanced Research Projects Agency) challenges have demonstrated 
how current robots are becoming more accurate, fast and dexterous in structured and 

unstructured environments.   
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Not everything worked as expected! 
The second wave: the current approach shows some limitations 
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On the other hand the debriefing of DARPA DRC shows clearly that humanoid robots are still far 
from the required level of capabilities in fact many metrics, such as time-to-completion, 

are highly application or task specific. 

According to H.Yanco a minimum of 9 people were needed to 
teleoperate latest DRC’s robots!!!   
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Pursuing new frontiers: 
The robotics bottleneck 
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Today, more functionality means: 
•  more complexity, energy, computation, cost  

•  less controllability, efficiency, robustness, safety 
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The Robotics waves 
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Industrial
robotics 

First wave 

Methodologies  
and Technologies  
for Robotics and 

Mechatronics 
Robotics body 
of knowledge

Advanced,  
Future and Emerging 
Robotics & Cognitive 

Systems 

Industrial  
leadership 

and 
societal impact 

Second wave  
FLAG-ERA 

RoboCom++ 
FET 

FLAGSHIP 
Proof-of-
concept 
Project 

Sustainable industrial  
leadership and ubiquitous 

societal impact 

Third wave 
New wave of 
use-centered 

science-based 
radical 

innovations 

Bionics  
& 

Bioinspiration 

Simplification,  
Self-

organisation 
Cognitive 
Science Society 

1960 2020 2030 2014 2017 
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SCIENCE ROBOTICS 
 



The marvellous progress of Robotics and AI…'Look 
Ma, No Hands' syndrome? 

 



 
Outline of the talk 
 
•  Robotics ‘waves’ 
•  Open issues with  current ‘paradigms’ and approaches, and the road ahead  
•  Newtonian Noise (a naïve view) 
•  Multisensory Fusion in Robotics 
•  Preliminary Ideas for NN characterization and mitigation in GW detection 
•  Possible application of robots, and of the 'robotics mind-set’ for GW detection 
•  Off the Record Considerations (possibly weird) 
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Multisensory Fusion in Robotics 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Giancarlo Cella
INFN sez. Pisa
3rd ILIAS Annual meeting
Gran Sasso INFN National Lab
February 28-March 3, 2006 
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Newtonian Noise (a naïve view)) 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Lower freqs = more turns 

Newtonian Noise (a naïve view)) 
 



 
Netwonian Noise  
A naïve view 
 
Main Issue: Rayleigh waves (and lacking knowledge of underground mass distribution) 
 
Problem: model underground and surface mass distribution and land motion  
(same issue with the atmosphere) to characterize and predict Rayleigh waves  
 

      

   



 
Other sources of noise: 
‘Environmental’  
i.e.   
•  Acoustic 
•  EM 
•  Others... 
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Multisensory Data Fusion in Robotics  
 
Multisensor data fusion is the process of combining observations from a number of 
different sensors to provide a robust and complete description of an environment or 
process of interest.  
 
Data fusion finds wide application in many areas of robotics such as object 
recognition, environment mapping, and localisation. 
 

 

      

   

From: H. Durrant-Whyte, T. C. Henderson, 
Multisensor Data Fusion,
Part C, Chapter 25,  in B.Siciliano, O. Khatib (eds.) Springer Handbook of 
Robotics, 2008



 
Multisensory Data Fusion in Robotics 
Principles 
It’s essentially an application of Bayes’ rule: 
 
assuming  conditional independence:  

 
 
 
We get the multisensory expression: 

 
 
and its recursive form: 

 

      

   



 
Multisensory Data Fusion in Robotics 
Methods 
 
•  Bayes’ Rule 
•  Probabilistic Grids 
•  The Kalman Filter (plus Extended Kalman Filters, Information Filters, etc.) 
•  Sequential Monte Carlo Methods  
•  Alternatives to Probability 
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H. Durrant-Whyte, T. C. Henderson, 
Multisensor Data Fusion,
Part C, Chapter 25,  in B.Siciliano, O. 
Khatib (eds.) Springer Handbook of 
Robotics, 2008
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H. Durrant-Whyte, T. C. Henderson, 
Multisensor Data Fusion,
Part C, Chapter 25,  in B.Siciliano, O. 
Khatib (eds.) Springer Handbook of 
Robotics, 2008
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H. Durrant-Whyte, T. C. 
Henderson, 
Multisensor Data Fusion,
Part C, Chapter 25,  in 
B.Siciliano, O. Khatib 
(eds.) Springer Handbook 
of Robotics, 2008



 
Multisensory Data Fusion in Robotics 
Methods 
 
Current directions of interest include: 
•  large-scale, ubiquitous sensor systems, 
•  bio-based or biomimetic systems, 
•  medical in situ applications 
•  wireless sensor networks. 
 

      

   



 
Multisensory Data Fusion in Robotics 
Applications 
•  dynamic system control: the problem is to use appropriate models and sensors to control the state  of a 

dynamic system (e.g., industrial robot, mobile  robot, autonomous vehicle, surgical robot, etc.).

•  environment modeling: the problem is to use appropriate  sensors to construct a model of some aspect  of 
the physical environment. Typical sensors include cameras,   radar, 3-D range finders, IR, tactile sensors and 
touch  probes (CMMs), etc. The result is usually expressed  as geometry (points, lines, surfaces), features 
(holes,   sinks, corners, etc.), or physical properties. Part of  the problem includes the determination of 
optimal  sensor placement.

 

 

 

      

   



 
Multisensory Data Fusion in Robotics 
Example: ANSER II: Decentralised Data Fusion 

Decentralised data fusion (DDF) methods were initially motivated by the insight that the information or canonical form of the conventional Kalman filter data 
fusion algorithm could be implemented by simply adding information contributions from observations. As these (vector and matrix) additions are 
commutative, the update or data fusion process can be optimally distributed amongst a network of sensors- 

The sensor is modelled directly in the form of a likelihood function. Once instantiated with an observation, the likelihood function is input to a local fusion 
loop which implements a local form of the Bayesian time and observation update. Network nodes accumulate probabilistic information from observation or 
communication and exchange mutual information  (information gain) with other nodes in the network. This mutual information is transmitted to and 
assimilated by other nodes in the network in an ad-hoc manner. The result is that all nodes in the network obtain a single integrated posterior probability 
based all node observations. 

The ANSER II system consists of a pair of autonomous air vehicles equipped with infra-red and visual sensors, a pair of unmanned ground vehicles 
equipped with visual and radar sensors, and additional information provided by geometric and hyper-spectral data bases, along with information input by 
human operatives. The likelihood functions for singlesensor features are obtained through a semi-supervised machine learning method. The resulting 
probabilities are modeled in the form of a mixture of Gaussians. Each platform then maintains a bank of decentralised, non-Gaussian Bayesian filters for the 
observed features, and transmits this information to all other platforms. The net result is that each platform maintains a complete map of all features 
observed by all nodes in the network. Multiple observations of the same feature, possibly by different platforms, results in an increasingly accurate estimate 
of the feature location for all nodes. 

The ANSER II system demonstrates a number of general principles in Bayesian data fusion methods. 

Specifically the need to appropriately model sensors through the likelihood function, and the possibility of building very different data fusion architectures 
from the essential Bayesian form. 
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Mathematical structure of a decentralised data fusion node

H. Durrant-Whyte, T. C. 
Henderson, 
Multisensor Data Fusion,
Part C, Chapter 25,  in 
B.Siciliano, O. Khatib 
(eds.) Springer Handbook 
of Robotics, 2008
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A synopsis of the ANSER II autonomous network and its operation. 
(a–c) Main system components;
(a) air vehicle,
(b) ground vehicle, 
(c) human operative. 

(d–e) The perception process; 
(d) top three dimensions of features discovered from
ground-based visual sensor data along with the derived mixture model describing these feature 
properties
(e) sector of the overall
picture obtained from fusing air vehicle (UAV), ground vehicle (GV) and human operator (HO) 
information. Each set of ellipses
corresponds to a particular feature and the labels represent the identity state with highest 
probability.

 (f–i) Sequential fusion
process for two close landmarks: (f) a tree and a red car, (g) bearing-only visual observations of 
these landmarks are successively
fused, (h) to determine location and identity (i). 

Note the Gaussian mixture model for the bearing measurement likelihood

H. Durrant-Whyte, T. C. Henderson, 
Multisensor Data Fusion,
Part C, Chapter 25,  in B.Siciliano, O. Khatib (eds.) Springer Handbook of 
Robotics, 2008
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NN mitigation  
Preliminary ideas 
 
•  (adaptive) Modeling of the area (emi) sphere of r ≈ 5 km by a network of robots 

equipped at least with onboard seismometers which change adaptively their 
positions 

•  Dynamic optimization of sensor positions (for example doubling those already 
installed?) 

 
 
 

 

      

   



 
Robotics  
Preliminary ideas 
 
A solution that doesn’t require the development of new basic science will be the application of methods 
directly imported from multi robot systems to the design of new concept  adaptive seismic sensor networks, 
where the deployment and adaptive real-time reconfiguration of a mesh of robotized seismic sensor might in 
principle allow a much more fine-grained and time-evolving models  of the underground layers of the earth 
crusts, opening new potentially very useful opportunities for research.  
For example, methods of deployment and re-deployment based on the maximization of the information gain [1, 
2, 3, 4] 
 
[1] A. Howard,  M. J. Mataric, G. S. Sukhatme, Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage 
problem, Distributed autonomous robotic systems 5.  299-308, (2002) 

[2] B. Shucker, J. K. Bennett, Scalable control of distributed robotic macrosensors, Distributed Autonomous Robotic Systems 6, 379-388, (2007) 

[3] N. Xiong, P. Svensson, Multi-sensor management for information fusion: issues and approaches, Information fusion 3.2,163-186, (2002) 

[4] A. Sanfeliu, J. Andrade-Cetto, Ubiquitous networking robotics in urban settings, Proceedings of the IEEE/RSJ IROS Workshop on Network Robot 
Systems, (2006) 
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Mathematical structure of a decentralised data fusion node

Density proxy measures 
on a (Voronoi?) grid? 
Also terrain morphology 
and usage patterns (people,…)

Semi-supervised, 
Reinforcement Learning?
Deep Reinforcement Learning 
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Quantum by INNOSEIS (a spin-out from the 
National Institute for Subatomic Physics in the 
Netherlands) is  an ultra-light weight (< 1kg) wireless 
seismic sensor network that dramatically reduces 
deployment costs, while scaling up to 1 million 
nodes for onshore exploration. It has be designed 
for static Wireless, sensor networks. However, a 
daisy-chain small network is operating in Cascina 
already and no major issues prevent to mount them 
on mobile platforms.
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Robotics  
Preliminary ideas 
 
•  Monitoring/Predictive maintenance   
•  Adaptation*  
•  Surveillance (if it is an issue) 
 
* For example adaptive tuning/calibration of the test mass vibration insulation systems, 
and in general of any subsystem requiring tuning/calibration  
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Bolder approaches...

Towards cheap lightweight bio-inspired autonomous vehicle, 
manipulation and grasping through ML/D(R)L



ML and D(R)L to the rescue?
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The traditional ‘mechatronic’ approach to Robotics, as described 
in the major textbooks on the matter: 
 
•  some (typically linearized) deterministic control strategy  
•  multi rigid body (typically heavy) kinematical structure.  
•  sensor measures  filtered by control observers.  

This basic structure is underpinning the great majority of ‘blind’ 
robots successfully utilized by many decades in automotive 
factories.  



ML and D(R)L to the rescue?
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‘First Wave’ robots: 
•  follow preprogrammed trajectories with very high accuracy and 

precision  
•  have very limited – in most cases no – sensory capabilities 
They are used for welding, painting and similar tasks in the final 
assembly of ‘big item’ manufactured products like cars, trucks, 
washing machines etc.  
In the latest couple of decades perception (vision, haptics, torque/
force sensing) and Path Planning and Object Recognition based 
on various AI methods have been investigated and applied in 
many research prototypes. 



ML and D(R)L to the rescue?
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‘Second Wave’ robots: 
In the latest couple of decades we had steep progress in:  
•  Perception (vision, haptics, torque/force sensing) and Object 

Recognition, 
•  Planning, SLAM and various AI methods 

Still not good enough for ‘really open-ended’ environments… 
However, 
Together with IoT low cost sensing and actuation they are 
enabling the Industry 4.0 revolution and the deployment self-
driving cars 



ML and D(R)L to the rescue?
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•  However, although already obtained results seem suitable for 
application in structured or semi-structured environments such 
as manufacturing facilities or hospitals, they lack robustness 
and adaptivity for their application in open-ended environments 
and in general the long awaited and promised applications of 
service robotics (elder care, home assistance etc.). 



ML and D(R)L to the rescue?
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•  A characteristic issue with the ‘traditional’ robot arms is that to 
make possible linear modeling at high speeds of structures with 
a non-linear dynamics you need heavy weights and as a 
consequence bad ‘payload ratios’ (the payload ratio is the ratio 
between the weight that a robot can move and the weight of the 
robot itself, for example a ratio 10 kg vs 200-300 kgs  of ‘robot 
body’ weight is not uncommon). Another issue is that a rigid 
structure radically limits, for example, the grasping and 
manipulation capabilities of the robot. 



ML and D(R)L to the rescue?
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Reducing weights and increasing compliance lead to: 
 
•  a dramatic increase in non-linearities  
•  more uncertainties in the dynamics and the measures 
•  scene and object recognition and related point clouds 

dimensionality dramatic growth 

Most widely used methods are less reliable (or useless). 



ML and D(R)L to the rescue?
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•  Machine Learning methods have been increasingly applied in 
Robotics for example Belief Space Planning 

•  Deep Learning methods have been recently applied to Robotics 
•  Solutions have been proposed, for example, leveraging on the 

group regularities in the movement and local displacements of 
mechanical structures  

•  A very radical approach is pursued by Sporns/Lungarella, 
Bonsignorio and others on the basis of Theoretical Information 
Science methods 



ML and D(R)L to the rescue?
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•  Machine Learning methods and DL methods show great promise for 
robotic research and application in particular for the application to the 
control of future soft bodied distributed sensing and actuation robots, were 
more established methods show their inherent limitations.  

•  Data science methods have so far not been applied in this are and may 
help both modeling and control.  

The problems of learning in physical natural and artificial intelligent systems 
will be core issues, in particular for (partially) soft robots  in the new FET-
Flagship Proof-of-concept RoboCom++ project, [9], on ‘next generation 
robotics’.  



ML and D(R)L to the rescue?
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•  All those issues are difficult to cope with ‘traditional methods’ 
while seem well suited for ‘fast’, asynchronous, reinforcement 
learning schemes.  

 
•  ML and DRL methods that have been already successfully 

applied in Robotics may actually be adapted and applied to GW 
detectors expanding their detection capability. 



ML and D(R)L to the rescue?
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Methods from GW and Data Science and the ML community may 
help experimental methods and benchmarking in robotics.  

•  Reproducibility of results and performance evaluation 
(benchmarking) are widely recognized issues in robotics  

•  one of the most serious reprducibility bottleneck is given by the 
huge amount of data generated by even trivial robotic 
experiments.  



Looking for new paths forward... 
For example: Information self-structuring

Experiments:

Lungarella and Sporns, 2006  
Mapping information flow  
in sensorimotor networks 
PLoS Computational Biology

7
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Lungarella,  
Sporns (2006) 





Probabilistic Model Of Control

8
6

•  Although it may seem strange only in recent times the 
classical results from Shannon theory,  have been 
applied to the modeling of control systems.  

•  As the complexity of control tasks namely in robotics 
applications lead to an increase in the complexity of 
control programs, it becomes interesting to verify if, from 
a theoretical standpoint, there are limits to the information 
that a control program must manage in order to be able 
to control a given system. 



Probabilistic Model Of Control
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      Directed acyclic graphs representing a control process. (Upper left) Full control system with a sensor and an actuator. (Lower left) Shrinked 
Closed Loop diagram merging sensor and actuator, (Upper right) Reduced open loop diagram. (Lower right) Single actuation channel enacted by 
the controller's state C=c.  

Touchette,  
Lloyd (2004) 



Models of ‘Morphological Computation’
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Snakebot
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see: Tanev et. al, IEEE TRO, 2005



Maybe not GOF Euclidean space? :-)

9
2

see: Bonsignorio, Artificial Life, 2013
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ARM 5E MICRO 
produced by ECA Robotics GummiArm



Introduction
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Open Source HW Platform

GummiArm
https://github.com/mstoelen/GummiArm



Early trials … 
“Motion planning in the belief space for compliant behaviour of a (NB: 
rigid) diver companion robot”  
( on a ‘standard’ arm: ARM 5E 
MICRO produced by ECA Robotics)

Enrica Zereik, Marco Bibuli, Gabriele Bruzzone, Francesco Gagliardi, 
National Research Council of Italy, Institute of Marine Engeneering
Fabio Bonsignorio, Heron Robots



Problem statement

ARM 5E MICRO 
produced by ECA Robotics



Belief State Approach
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Belief State Approach
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Belief State Approach
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Simulations

Simulation of the first scenario: the diver is performing a task in a specific spot and the robot is moving 
in a circular path around him/her in order to monitor his/her health status and reactively respond to possible
requests coming from the diver.

 



Simulations

Simulation of the second scenario: the diver is exploring the underwater environment and the robot  
is asked to move in a circular path around him/her while translating in a compliant way with respect  
to the diver motion. 
Note that, in case the diver arrives to a stop to perform another taskin a specific spot (e.g. because  
he/she has seen something interesting), the robot buddy will switch to the first scenario moving again  
along a circular path around the diver. 

 



Introduction
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Motion planning in the belief space for 
compliant behaviour of a compliant arm 
(derived from GummiArm)
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Ongoing work:

1.  Motion planning in the belief space Lie-Group aware

2.  Machine Learning and Deep Learning Lie-group aware 
implementing/adapting  Artificial Life 2013 IDSO 
approach 



The Road Ahead

http://www.cost.eu/COST_Actions/ca/CA17137 



Summary
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•  HeronRobots and CNR-ISSIA (now part CNR-INR) work 
together on a potentially disruptive deeply bio inspired mobile 
manipulation and grasping technology especially suited for 
underwater applications.  To this purpose they constituted the 
Joint Lab Heron@CNR (http://www.issia.cnr.it/wp/heroncnr/)  

•  As a first goal, we are developing a new tendon-based 
manipulation system – loosely connected to an underwater 
(semi) autonomous  vehicle-  which does not require significant 
mechanical accuracies in the joints and in the limbs. 

•   The system will exploit morphological computation and the Lie 
Group underlying structure of the arm motion.  



Summary
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•  The main issues with Deep (reinforcement) Learning , and in 
general Machine Learning, methods when applied to robotics is 
their data inefficiency.  

•  The learning system operates in a huge abstract state space 
which consider way too many physically impossible 
configurations and does not consider the underlying group 
transformation structure of the possible motions. 

•  Our system will overcome (or at least mitigate) those limitations. 



Summary
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•  To our knowledge this is the first time that a compliant robotic 
system is governed by a DRL system inherently exploiting 
morphological computation and body dynamics. 

•  This will hopefully J allow implementing autonomous 
underwater vehicle manipulation with unprecedented dexterity 
at low cost. 



Bottom Line: Physics Matters!
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Coping with the common underlying theoretical 
issues implied by the application of ML and DL to 
physical systems might have deep and wide scientific 
and technological impact (for example protein 
folding.. DeepMind AlphaFold!) 



Thank you! 
 
 


