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Introduction

e There is an increased need for rapid earthquake detection and characterization
which is currently mainly provided by real-time analysis of seismogram
waveforms using empirical and physics rule-based procedures

e Extracting information from seismograms requires a lot of processing using
rule-based seismological procedures

e Development of ML techniques lead to application of ML to wide variety of
waveform analysis problems

® One of the most general ML approaches is the CNN which can be successfully
applied to waveform analysis problems (Perol et al.,, 2018.)



ConvNetQuake - Perol et al. (2018)

ConvNetQuake, a CNN for earthquake
detection and location for earthquakes that

originate from a single region
Data: noise and local events of two stations in

Oklahoma, USA
Goal: noise/event and rough geographic area

classification using single-station 3C data
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CNN comparison with classical methods

® The CNN can operate directly on the waveforms, with little pre-processing and
without feature extraction such as energy detection, time-series transformation or
frequency-domain analysis

e The CNN architecture is shift invariant and so not sensitive to or dependent on
the time position of features such as P and S wave arrivals in the waveform

e Unlike standard regression, the CNN is not limited by assumed and simplified
mathematical relations between quantities

e The CNN does not make explicit use of existing knowledge and the question
remains does it learn the general physics-based principles or it remains just a
high-dimensional regression



Work goals

We extend the work of Perol et al. to detect and determine the location of global
earthquakes at any distance over a large range of magnitudes and depths

The inputs are single-station, 50 seconds, 3 component 20 Hz waveforms from all
the stations within the regional MedNet network

The outputs are classification event/noise and binned, probabilistic estimates of
the distance, azimuth, depth and magnitude of an event

The goal is to examine how well the network can detect and characterize
earthquakes and how well can it generalize to unseen data(regions)



Data

e Downloaded noise and event data for MedNet stations using FDSN webservices

e Minimal pre-processing: trim event waveforms to start 5 sec prior to P arrival,
normalize to global maximum of all 3 traces and store the normalization value so
it can be appended to the input
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The network

The network ConvNetQuake_INGV is a CNN with 9 convolutional layers, each
with 32 channels and half the number of features as the preceding layer, and two
fully connected layers at the end
The final, fully connected layer, contains an event node, 50 distance nodes, 20
magnitude nodes, 20 depth nodes and 36 azimuth nodes
The ReLu activation function is used in CNN layers and softmax function is
applied to the output fully connected layer class scores to obtain a properly
normalized probability distribution over classification bins
For training, ConvNetQuake_INGV uses an L2-regularized cross-entropy
loss(misfit) function and the Adam Optimizer algorithm



CovNetQuake_INGV Architecture

input data: 3 component waveforms
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Training

e For training: 15200 event and 10724 noise waveforms starting from year 2010 to
year 2018; Validation: 1773 event and 1198 noise waveforms, same timespan
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Testing

e Testing has been done on 1003 event and 621 noise events from 2009
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Detection results

e detection accuracy (correct detections / total number of waveforms): 0.87

e detection precision (number of correct event detections / total number of
predicted event detections): 0.97

e recall (number of correct event detections [ total number of events): 0.81

e Fl score (2 * precision * recall / (precision * recall)): 0.88.
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Results

Test results are similar to, but notably more scattered than the validation results;
validation events include many aftershock, swarm and other events with similar

waveforms; suggests difficulty in generalizing
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Analysis of epicentral errors

Figure a): increase in distance error with distance; sharp and strong increase in
maximum error beyond about 3.5° indicates reduced distance accuracy when there
is no S arrival in the waveform window

Figure b): Mild reduction of distance error with increasing training event density
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Summary

CNN for single station broadband seismograms over a large span of event types,
distances, magnitudes and depths

Performs very well in detecting events whose waveforms are dissimilar to any in
the training data

Event characterization does not show the same performance, with a tendency to
overfit to areas with high event density, and with lot of outliers; there is, however,
some generalization of the determination of the event parameters

Not a practical monitoring tool, but allows investigation into rapid detection and
characterization for short, single-station waveforms
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Outlook

Incorporate new machine learning techniques (CNN + LSTM...)
Use additional metadata about the stations (V 30, fO...)
Use two or more stations

Move to ground-motion prediction
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Thank you for your attention
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