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Advance Virgo Sensitivity Curve
Fundamental Noises: 
I. Displacement Noises 
ΔL(f)

• Seismic noise
• Radiation Pressure
• Thermal noise

Suspensions
 Optics

II. Sensing Noises 
Δtphoton(f)

• Shot Noise

• Residual Gas
Technical Noises:

! Hundreds of them…

Acernese et al. 2014

The sensitivity of GW detectors is limited by diverse sources of noise.

Sources of noise



Noise transients - glitches

Gravity Spy, Zevin  et al (2017)

Non-Gaussian transients of noise. Large variety of morphologies.

Effect on detectors

1. Reduce significance of candidate GW events.
2. Affect estimation of physical parameters.
3. Reduce amount of usable data.        

Prompt characterization of noise critical for improving sensitivity. 
Fast methods for glitch classification are needed.

www.zooniverse.org/projects/zooniverse/gravity-spy

https://www.zooniverse.org/projects/zooniverse/gravity-spy
https://www.zooniverse.org/projects/zooniverse/gravity-spy


GW170817 glitch

Abbott et al (2017)



Proof of concept
• Test with non-white Gaussian noise.
• Proof that the algorithm works with GW signals.

Application to real data
• Test with non-white non-Gaussian noise.
• Proof that the algorithm works with GW real data.

Test with standard pipelines
• Use in combination with standard pipelines.
• Proof that the algorithm improves the results.

Gravitational-wave data analysis: steps



• Data analysis technique to remove noise. 

• TV denoising is one of the best denoising models but also 
one of the hardest to compute as it is based on the L1 
norm.

• Developed and tested (mainly) in the context of image 
restoration.

• At UV we have adapted TV techniques to GW signals.

• Interesting features:

No a priori information of the source needed.
Can be applied in both time and frequency domains.
Can be easily extended to higher dimensionality.r

  Complementary to existing data analysis methods.

Total-variation methods for GW denoising



Example image TV denoising using the split Bregman method for L1 
regularized problems (Goldstein & Osher 2009). 

(as implemented by B. Tremoulheac in MathWorks)



Introduction to variational problems

f = u+ n f

u
n

Linear degradation model: measured signal
noise
signal to recover

Solution: find a functional     whose L2-norm distance to   is the standard 
deviation of the noise

u f

||f � u||2L2
= �2

Gibbs phenomena. Non unique solution.

Issues overcome using an auxiliary energy prior          to regularize the 
least-squares problem, solving a constrained variational problem:

Unique solution if           is convex.

subject to ||f � u||2L2
= �2

min
u

R(u)

R(u)

R(u)

(e.g. least squares 
or Fourier series)



Variational problem can be formulated as an unconstrained problem 
(Tikhonov regularization):

u = argmin
u

⇢
R(u) +

�

2
F(u)

�

F : Fidelity term. Measures the similarity of the solution to the data.
R : Regularization term. Constraint we impose on the data.
� : Regularization parameter. Controls relative weight of both terms. 

u = argmin
u

⇢
R(u) +

�

2
||f � u||2L2

�
, � > 0

Unique solution for a given value of    . 
   becomes the scale parameter. Larger values allow to recover finer 
scales.

�
�

R(u) ⌘
Z

|ru|2L2 Wiener filter �u+ �(f � u) = 0

Elliptic PDE. Easy to solve due to differentiability and strict convexity.
Issues in the presence of noise: a) amplification of high frequencies; 
b) the recovered smooth solution shows spurious oscillations near 
steep gradients or edges.

If
Associated Euler-Lagrange eq.



Rudin-Osher-Fatemi model (ROF)

u = argmin
u

⇢
TV(u) +

�

2
||u� f ||22

�
TV(u) =

Z
|ru|1

Convex problem. 
Preserves steep gradients or edges and avoids spurious oscillations. 
Unique solution for a given value of the regularization parameter.

Fine scales are unresolved by the effect of the TV norm.
A good estimation of    results in an ill-conditioned Euler-Lagrange eq: 

r · ru

|ru| + �(f � u) = 0 E-L eq. ill-defined for ru = 0

Solution: to slightly perturb the TV functional (regularized ROF model)

u = argmin
u

⇢
TV�(u) +

�

2
||f � u||2L2

�
, TV�(u) ⌘

Z p
|ru|2 + �

�

Associated Euler-Lagrange equation is elliptic and non-degenerate.
Approximate solution can be obtained by e.g. a nonlinear Gauss-Seidel 
iterative procedure.
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CCSN catalog 
(Dimmelmeier+ 2008)

BBH catalog
(SXS Collaboration Mroué+ 2013)

Magneto-rotational mechanism
128 waveforms
Short duration

174 waveforms
Frequency and amplitude 

increase with time 
Long duration

Signals injected in Gaussain noise 
provided by the LAL library from LSC. 

Advanced LIGO proposed broadband 
configuration.

Torres-Forné+ 2014



MSE ⌘ 1

n

nX

i

(ŷi � yi)
2

SSIM(x, y) ⌘ (2µ
x

µ

y

+ c1)(2�xy
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2
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2
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DSSIM(x, y) ⌘ 1� SSIM(x, y)

2

PSNR(dB) = 10 log10

⇣ n

MSE

⌘

We must determine the optimal value of the regularization parameter 
that produces the best results. Heuristic search when the standard 
deviation of the noise is not known. 

Quality 
estimators:
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Regularization parameter estimation

       used to denoise GW signals under different SNR conditions.�
opt



SNR=20

CCSN BBH

Torres-Forné+ 2014

Results for Gaussian noise



Detector noise is not Gaussian (e.g. 
sources of narrow-band noise such as 
the electric power, mirror suspension 
resonances, calibration lines, etc).

TV-denoising with Advanced LIGO data

Sophisticated approach: transform the 
colored noise into white noise using an 
autoregressive (AR) model (Cuoco et 
al 2001).

Our data: 10 chunks of data of 5 s 
each randomly chosen from the entire 
O1 data from LLO.

Data must be first pre-conditioned to 
make the noise flat in frequency 
(whitening).

Preprocessing

Data Conditioning

Processing

Postprocessing

Read in Data

PSD Estimation

Signal Injection

Line Filtering

rROF Whitening

rROF iterative

Error Calculation

Plotting

Simple approach: remove spectral 
lines and filter low frequencies.



Regularization parameter estimation
NR signals from CCSN and BBH catalogs injected into O1 data          
(10 different random GPS times).

30 CCSN signals
@ 5, 10, 20 kpc

Histograms of optimal values of     (maximum SSIM) �

100 BBH signals
@ 400, 800, 1000 Mpc

We follow two approaches:
  1. Use the mean value of regularization parameters for all waveforms.
  2. Use the average of 20 different values sampled from a Gaussian               
distribution with same mean and variance than the histograms).

�̄
opt

= �0.28 �̄
opt

= �0.95

�
opt

= 0.58 �
opt

= 0.27



AR-whiteningFiltering

Results for real noise: CCSN waveforms



Results for real noise: CCSN waveform

Not very strong dependence on 
the regularization parameter.

Signal A @ 10 kpc

Signal B @ 10 kpc



Results for real noise: BBH waveform

Filtering AR-whitening



Results for GW150914



Denoising of GWs with Dictionary Learning
Growing interest in the problem of the sparse representation of signals. 
The use of sparse representations via learned dictionaries has proved 
to be very effective for signal denoising problems.  

p

n

D

↵

=

u

Dictionary: Matrix of prototype 
signals (atoms).

Signals are described by sparse 
linear combinations of the atoms 
using a few coefficients. 

LASSO (Tibsibirani R. JSOR, B, 58. 1996) 

f = u+ n

↵ = argmin
↵

�
||D↵� f ||22 + �||↵||1

 
u = D↵

LASSO problem solved using the 
Split-Bregman algorithm 

[Least Absolute Shrinkage and Selection Operator]



Initial dictionary

Perform 
dictionary          
learning

Catalog of GW signals
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Dictionary learning problem
1. We start by considering a finite number of training signals: m 
patches of length n.

U = [u1, · · · ,um] 2 Rn⇥m n ⌧ m

2. To obtain the trained dictionary, we add the dictionary matrix D 
as a variable in the minimization problem:

↵ = argmin
↵,D

1

n

mX

i=1

||D↵i � ui||22 + �||↵i||1

↵i i-th row of Contains the coefficients of the sparse 
representation of each atom in the dictionary.

3. Dictionary updated using a block-coordinate descent method (Mairal 
et al 2009, Tseng 2001).

↵ 2 Rp⇥n

CCSN and BBH gravitational wave catalogs. 80% of waveforms to train 
the dictionary, 15% for method validation, and 5% to test algorithm.

Signals shifted to be aligned with minimum peak (CCSN) or maximum 
peak in the merger (BBH). 2048 samples to train the dictionary.



Peaks well recovered
PNS ringdown smoothed out 

SSIM = 0.98 SSIM = 0.67

CCSN signals (Dimmelmeier+ 2008)

Small oscillations lost
Broad morphology captured

SNR 20, Gaussian noise Torres-Forné+ (2017) 

Best (left) and worst (right) denosing results for a given  and noise 
realisation.

�



CCSN signal from the catalog of Abdikamalov et al (2014).

CCSN signal from a different catalog

Torres-Forné+ (2017) 

Accurate results:

Similar structure (burst)
Some peaks missing (PNS damped oscillations)



BBH signals (SXS Collaboration Mroué+ 2013)

Torres-Forné+ (2017) 

SNR 20 
Gaussian noise
Random signal from test set
Random time of arrival

SSIM index = 0.86

Dictionary specifically designed to 
recover the merger part.
Phase very well captured.



Test the dictionary when 
dealing with signals 
different from the type they 
are designed for.

Use both dictionaries 
independently.

Each dictionary 
discriminates well between 
the type of signal.

Signal discrimination



Results for GW150914



Glitch classification
In the LVC there exist diverse strategies to classify glitches in the detectors:

Powell et al (2015, 2017):
• PCAT: Principal Component Analysis for Transients. Uses PC coefficients 
to classify glitches using a Gaussian Mixture Model.
• PC-LIB: Based on LAL-Inference. Computes Bayes factor for glitch 
selection. Supervised classification.
• WDF-ML: Wavelet Detection Filter + (unsupervised) ML algorithm 
(GMM).

Zevin et al (2017): Gravity Spy, Zooniverse Platform. Citizen science + ML.

Mukund et al (2017): Difference Boosting Neural Network (supervised 
Bayesian classifier).

George et al (2018): Deep Learning + Transfer Learning.

Razzano & Cuoco (2018): Convolutional Neural Networks to classify glitches 
from their spectrograms (time-frequency evolution)

Llorens-Monteagudo et al (2018): Dictionary learning.



Data set of 3000 simulated glitches of three different waveform 
morphologies, comprising 1000 glitches per morphology.

3 simple types of glitch morphologies (following Powell et al, 2015)

Simulated glitches embedded in Gaussian noise to simulate the 
background noise of advanced LIGO in its broadband configuration.



Performance barely decreases with SNR (down to SNR~10).    
Most misclassified glitches have highest and lowest frequencies. More 
affected by noise than intermediate frequencies.

Confusion matrix

Out of 3000 glitches, 2879 (96%) 
are correctly classified. 

Llorens-Monteagudo+ (2018) 



Summary

• We have discussed variational methods for minimization 
problems based on the TV-norm in the context of 
gravitational-wave signals. 

• Novel strategy in the field. 

• We have shown that TV algorithms can be useful in the field 
of Gravitational-Wave Astronomy as a tool to remove noise.

• ROF model has been tested both for Gaussian noise and 
with Advanced LIGO data.

• We have discussed a machine-learning algorithm based 
on dictionaries.

• We have shown that they can be successfully applied for 
both, gravitational-wave denoising and glitch classification.



Upcoming GR22/Amaldi13 conference in Valencia

www.gr22amaldi13.com
Topics from the G2NET Cost Action will be discussed at the GR22/Amaldi13 conference

Thanks for your attention!

http://www.gr22amaldi13.com
http://www.gr22amaldi13.com

