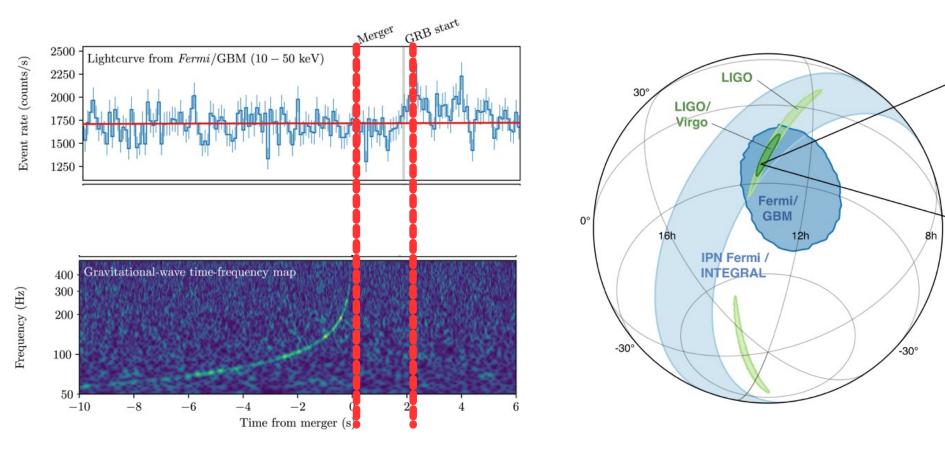

Gravitational waves & images Image-based transient signal classification with deep learning

(1)University of Pisa ⁽²⁾INFN-Pisa ⁽³⁾EGO

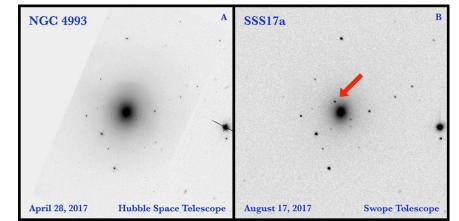
1st Conference on Machine Learning for Gravitational Waves, Geophysics, Robotics, Control System EGO, 14-16 Jan, 2019

The era of Advanced GW detectors



LIGO-Livingston (4 km)

O1 and O2 ended. Looking forward to O3!


M. Razzano

GW170817 and multimessenger astronomy


Sending out fast alerts is key to EM follow-up

Abbott+17, PRL 119,161110 Abbott+17, ApjL,848,12 Coulter+17,Science,358,1556

The challenge of Big Data

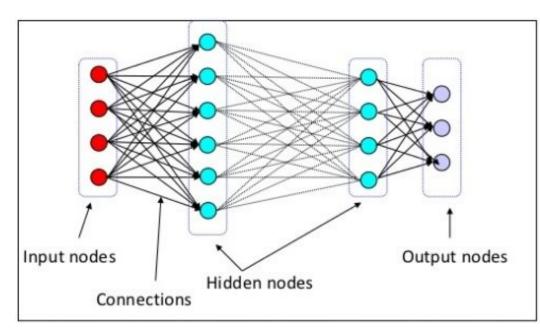
- Not just HE physics anymore
- Sloan Digital Sky Survey : 125 TB
- Large Synoptic Survey Telescope: > 15 TB/year
- Gaia: 73 TB (+ additional data \rightarrow 1 PB)

10⁶ PB

This is Big Data !

Big Data in gravitational waves

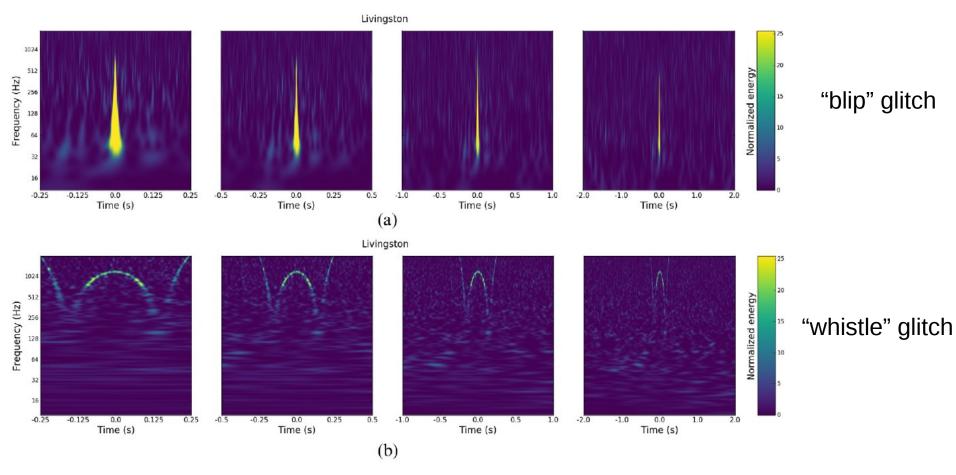
Interferometers are producing lots of data everyday
 Virgo 50 MB/s → about 0.5 TB/day from ~1000 channels
 Signals are buried in a high noise


Big data methods are required at least for 2 reasons

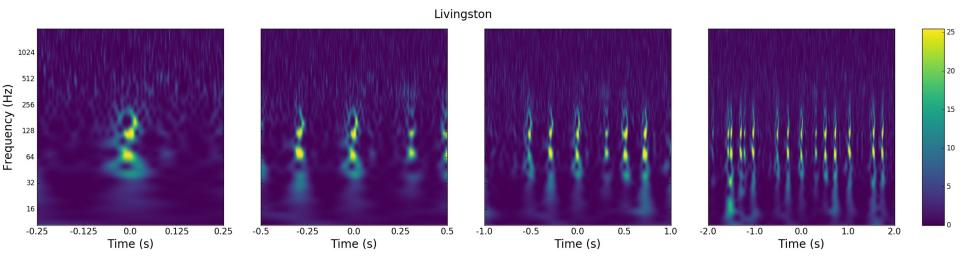
- On shorter timescales
 - Low-latency analysis for quick EM alert
 - Detector characterization
 - Detection and quick localization
- On longer timescales
 - Search for new sources (not just CBC but also CW etc)

Why Deep Learning?

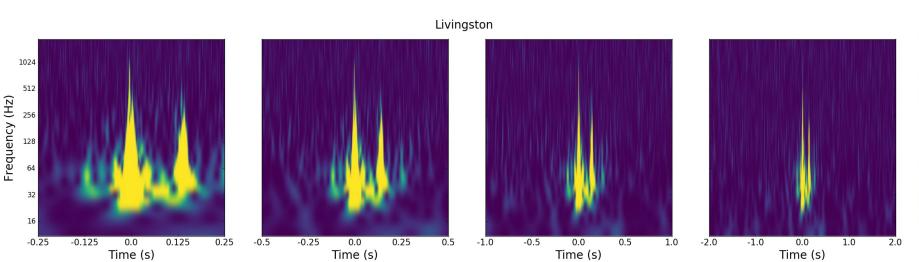
- Deep Learning (DL) is at the frontiers of ML studies
 - Born from works on neural networks and artificial intelligence
- Combines the architecture of Neural Networks (NNs) with the power of ML
- Building block is an artificial neuron (perceptron), acting as a nonlinear processing unit
- From a single perceptron to a multilayer network of perceptrons


Various projects in progress in LVC to apply ML and DL to GW studies
In principle, a deep network can approximate any continuous function (universal approximation)

Deep learning for glitch characterization & classification


- Interferometers are limited by stationary and nonstationary noise
- Transient noise events (glitches) can impact data quality and mimic real astrophysical signals
- Detect and classify glitches is one of the most important taks for detector characterization and data analysis
- Low-latency data quality important for multimessenger follow-up
- Glitches can have complex time-frequency signatures → difficult to classify manually
- Automatic methods have been tested (e.g. Powell+15, CQG,32,215021, Mukund+17,PRD,95,104059)
- Many groups working on this in the LVC

Sample glitch gallery

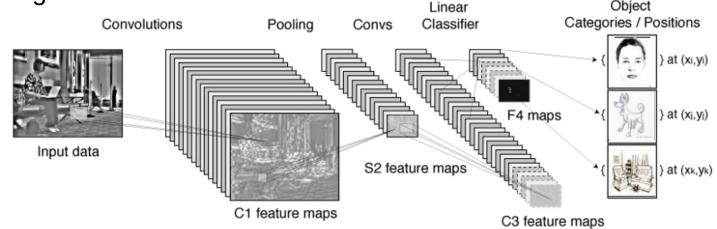


Examples of time-frequency glitch morphology (Zevin+17)

Sample glitch gallery

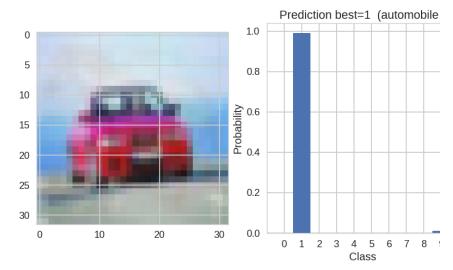
Helix glitch

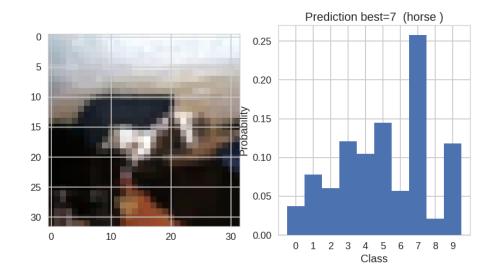
Koi fish glitch

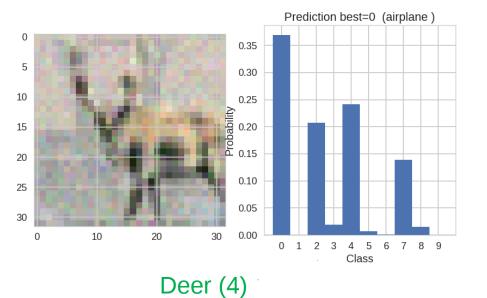

20

15

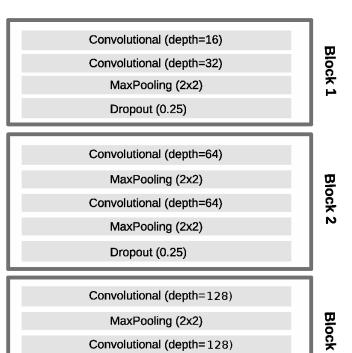
10


Deep Learning & glitches


- Promising tool to classify complex patterns
- Deep network to approximate a classification function
- In our case, the function F is:
 - F: glitch GW data \rightarrow glitch class
- We focus on images
 - Easy to spot signal "types" (training)
 - Compress long data stream (time-frequency)
 - Image recognition techniques
- Simple deep neural networks are not optimal (too CPU expensive)
- We use Convolutional deep Neural Networks (CNNs)
 - More complex than NNs
 - Optimized for image classification


Work in collaboration with E. Cuoco (EGO, SNS)

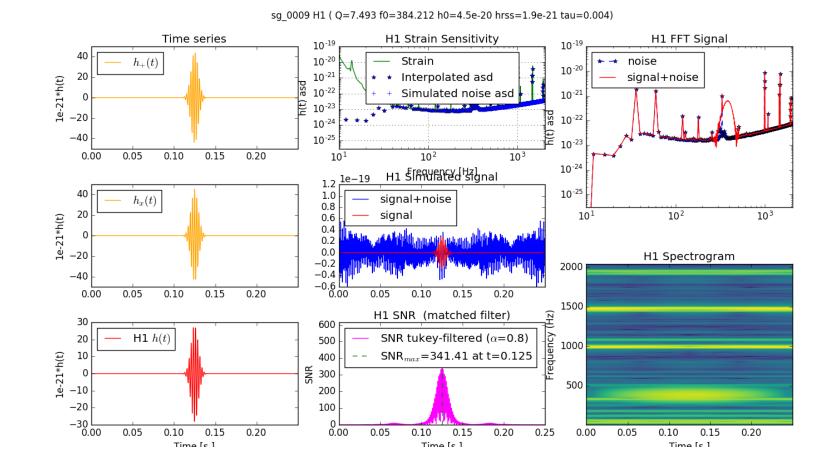
Some first tests on general images


Not easy to spot!

Python libraries (Keras+TensorFlow) Run on GPU

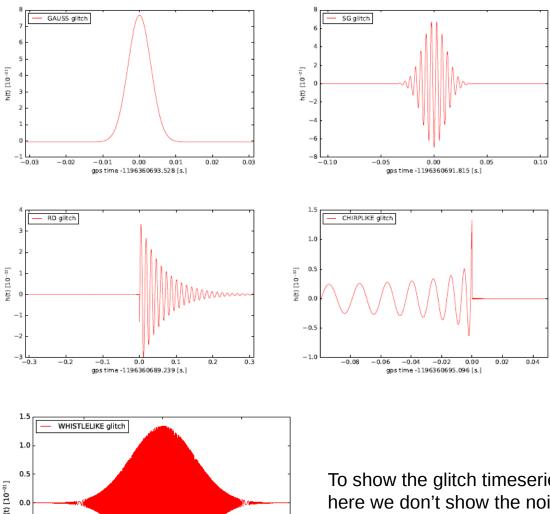
Our running configuration

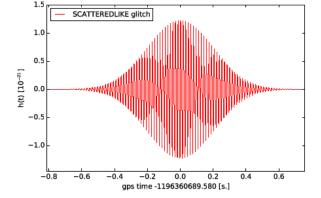
- Input GW data
 - Image processing
 - Time series whitening
 - Image creation from time series (FFT spectrograms)
 - Image equalization & contrast enhancement
- Classification
 - A probability for each class, take the max
 - Add a NOISE class to crosscheck glitch detection
- Network layout
 - Tested various networks, including a 4-block layers
- Run on GPU Nvidia GeForce GTX 780
 - 2.8k cores, 3 Gb RAM)
 - Developed in Python + CUDA-optimized libraries

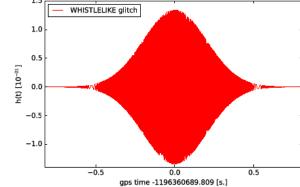

MaxPooling (2x2) Dropout (0.25) Fully Connected (N=512) Dropout (0.25) Fully Connected (N=N_{class})

Out Block

Tests on simulations (I)

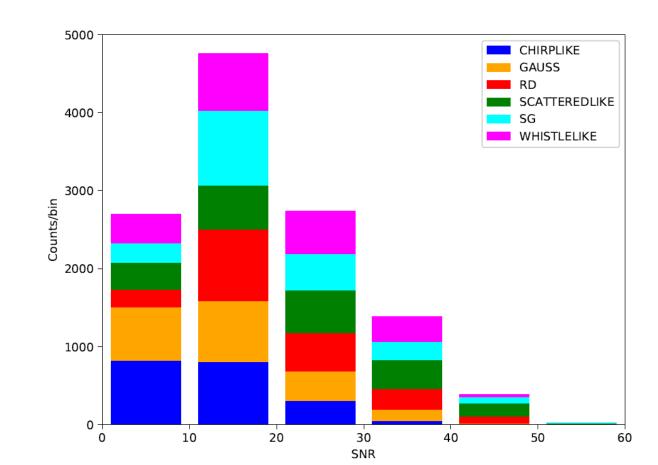

To test the pipeline, we prepared ad-hoc simulations


- Simulate colored noise using public H1 sensitivity curve
- Add 6 different classes of glitch shapes



Tests on simulations (II)

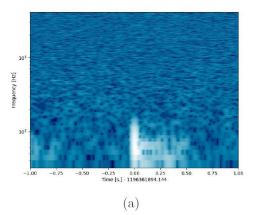
Simulated families

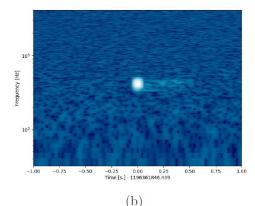


To show the glitch timeseries here we don't show the noise contribution

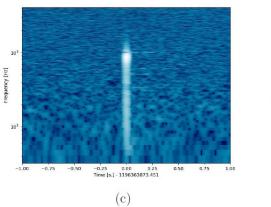
Tests on simulations (III)

- Simulated time series with 8kHz sampling rate
- Glitches distributed with Poisson statistics μ =0.5 Hz
- 2000 glitches per each family
- Glitch parameters are varied randomly to achieve various shapes and Signal-To-Noise ratio



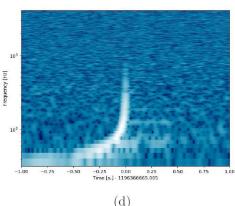

0251_GAUSS

0240_SG


Building the images

- Spectrogram for each image
- 2-seconds time window
- to highlight fatures in long glitches
- Data is whitened
- Optional contrast stretch

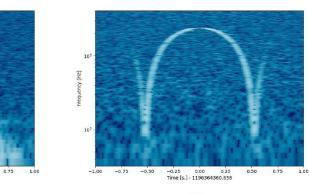
0339_RD


0343_SCATTEREDLIKE

10³

102

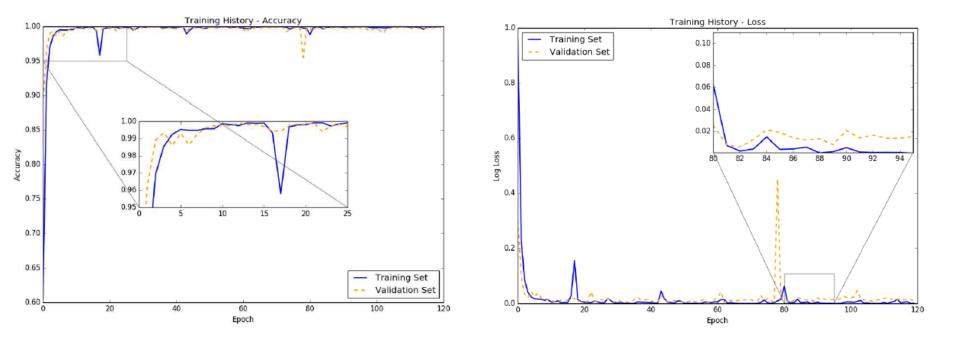
-1.00 -0.75 -0.50


Frequency [Hz]

0451_WHISTLELIKE

0619_CHIRPLIKE

0.50

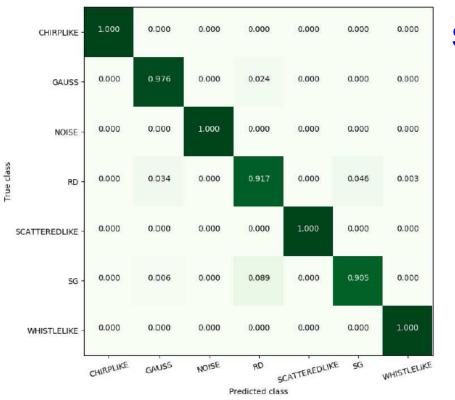


-0.25 0.00 0.25 Time [s.] - 1196363883.276

(f)

Training the CNN

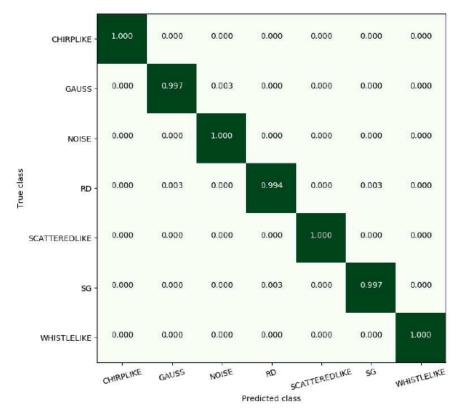
- Datasets of 14000 images
- Training:validation:test \rightarrow 75:15:15
- Image size 241 x 513
- Reduced the images by a factor 0.55 due to memory constraints
- Use validation set to tune hyperparameters
- On our hardware, training time ~8 hrs for ~100 epochs
- When training is done, classification requires ~1 ms/image (on our configuration)


Classification results – metrics

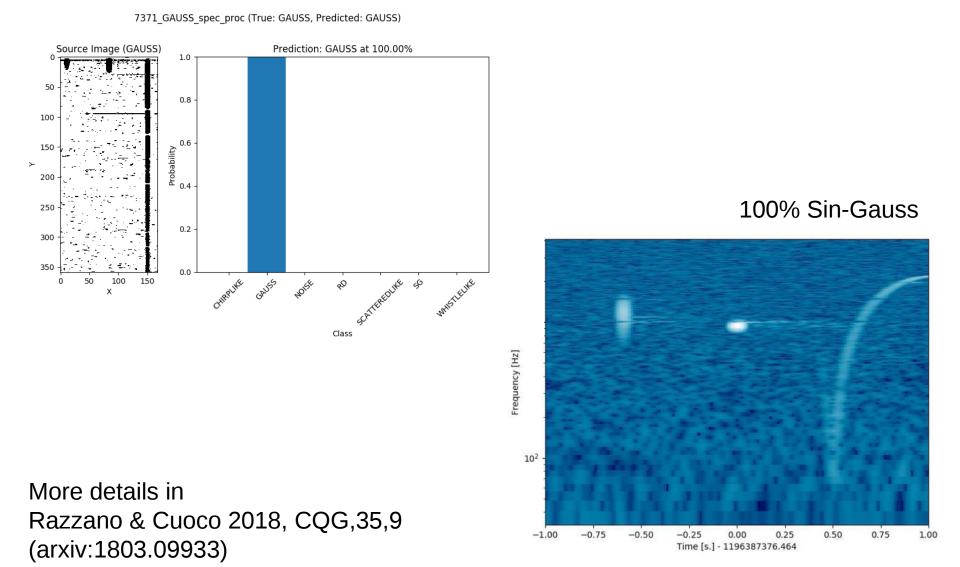
• We compared classification performances with simpler architectures

	Metric	Accuracy	Precision	Recall	F1 score	Log loss	
Linear Support Vector Machine	SVM	0.971	0.972	0.971	0.971	0.08	
CNN with 1 hidden layer	Shallow CNN	0.986	0.986	0.986	0.986	0.04	
	1 CNN block	0.991	0.991	0.991	0.991	0.02	
CNN with one block (2 CNNs+Pooling&Dropout)	3 CNN blocks	0.998	0.998	0.998	0.998	0.008	
Deep 4-blocks CNN	S						

Classification results


Normalized Confusion Matrix

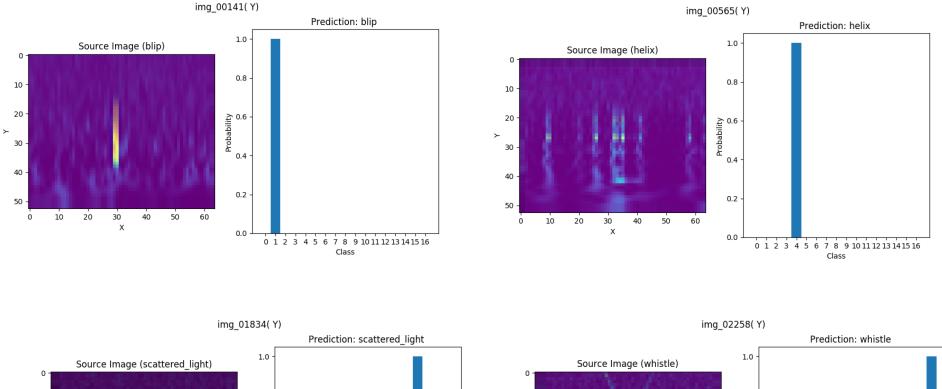
Deep CNN better at distinguishing similar morphologies


SVM

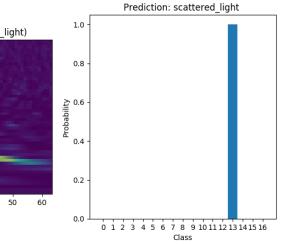
Deep CNN

Classification results

Some cases of more glitches in the time window, always identify the right class



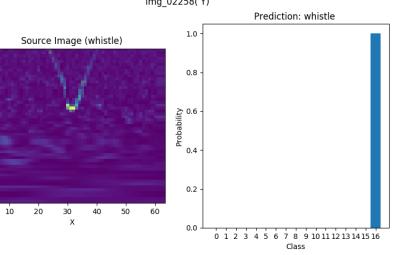
Run on O1 dataset


Glitch name	# in H1	# in L1
Air compressor	55	3
Blip	1495	374
Chirp	34	32
Extremely Loud	266	188
Helix	3	276
Koi fish	580	250
Light Modulation	568	5
Low_frequency_burst	184	473
Low_frequency_lines	82	371
No_Glitch	117	64
None of the above	57	01

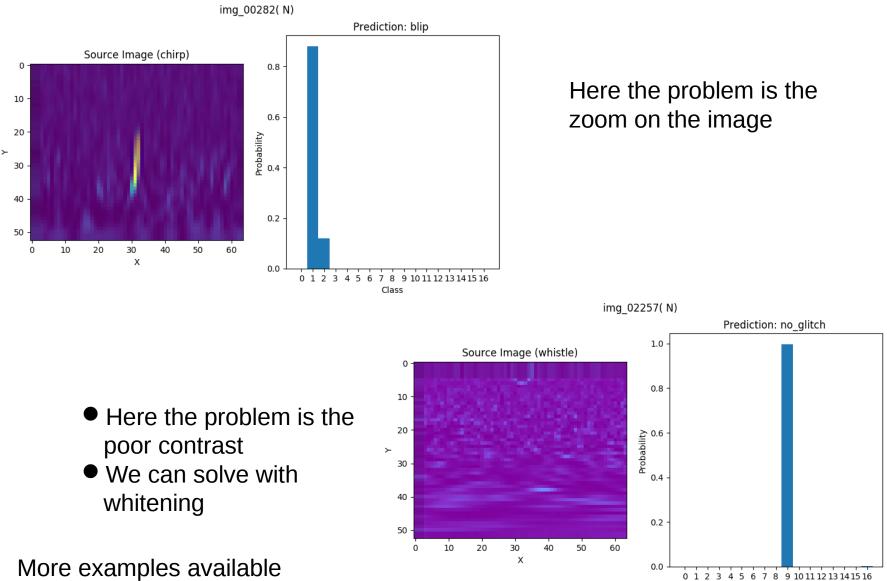
Glitch name	# in H1	# in L1
Paired doves	27	-
Power_line	274	179
Repeating blips	249	36
Scattered_light	393	66
Scratchy	95	259
Tomte	70	46
Violin_mode	179	_ L

Sample results

≻


10 -

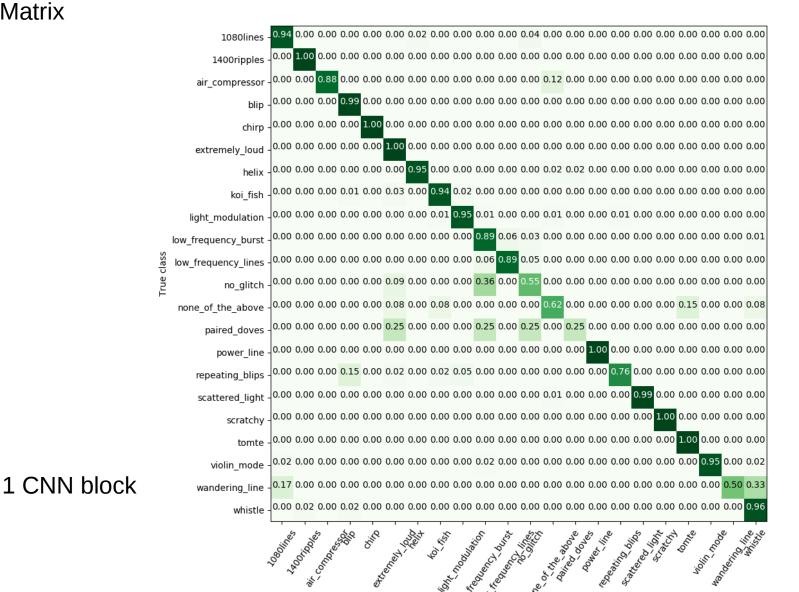
20 -


50 -

х

≻

Sample misclassifications



Class

Classification results

Confusion Matrix (Normalized)

Normalized Confusion Matrix

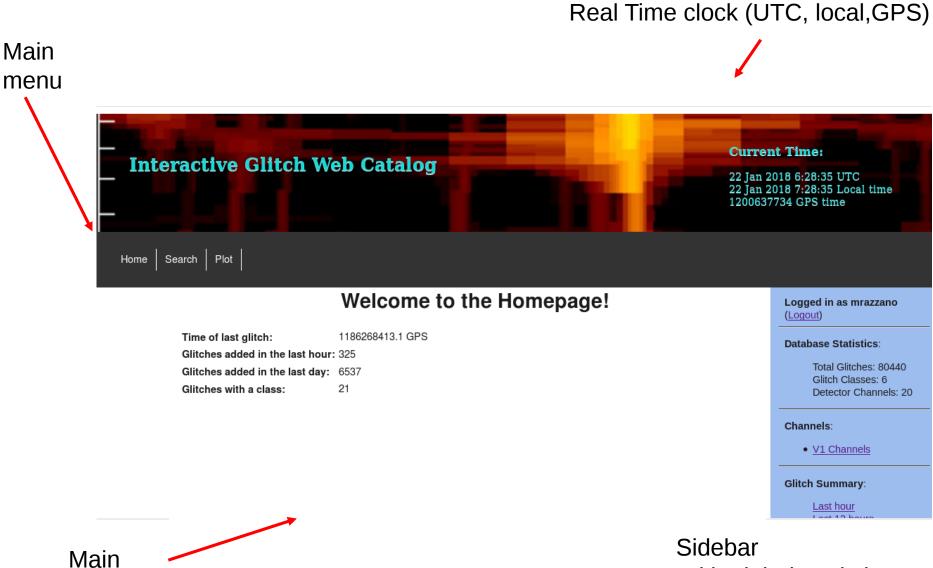
Classification results

Confusion Matrix (Normalized)

	1080lines -	0.98	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1400ripples -	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	air_compressor -	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	blip -	0.00	0.00	0.00	0.98	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00
	chirp -	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	extremely_loud -	0.00	0.00	0.00	0.00	0.00	0.96	0.00	0.03	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	helix -	0.00	0.00	0.00	0.00	0.00	0.00	0.98	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	koi_fish -	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	light_modulation -	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00
	low_frequency_burst -	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.96	0.03	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
200	low frequency lines -	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.88	0.05	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00
מטכ	no glitch -	0.00	0.00	0.00	0.00	0.00	0.09	0.00	0.00	0.00	0.00	0.00	0.91	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
=	none of the above -	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.69	0.00	0.00	0.00	0.00	0.08	0.15	0.00	0.00	0.08
	paired doves -	0.00	0.00	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	power line -	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	repeating blips -	0.00	0.00	0.00	0.05	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.90	0.00	0.00	0.00	0.00	0.00	0.00
	scattered light -	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.99	0.01	0.00	0.00	0.00	0.00
	scratchy -	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
	tomte -	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
]																				0.00	
	violin_mode -																					1.00	
	wandering_line -]																				0.00	
	whistle -	L_											0.04		-	-							
		100000	, oologian t	S, is	200	Chill	4	D'at	101 131	C 11000	duency don	NUS .	Sile Sile	· .	and	ower line	2. Q	Sall Pole	N. S. S.	(onle	100 more	andering "	hille hille
		00° ~	ooth	out			ener 6		10.	CODII:	en che	- Color	67	the second	No.	no.	Call of	e e	S.		Jun'	Nell'S	4
			1	1		ţ.	7		ý	1	8	0°		ò' থ	,	2	Ű.	ř		1	30	F	

True class

Normalized **Confusion Matrix**

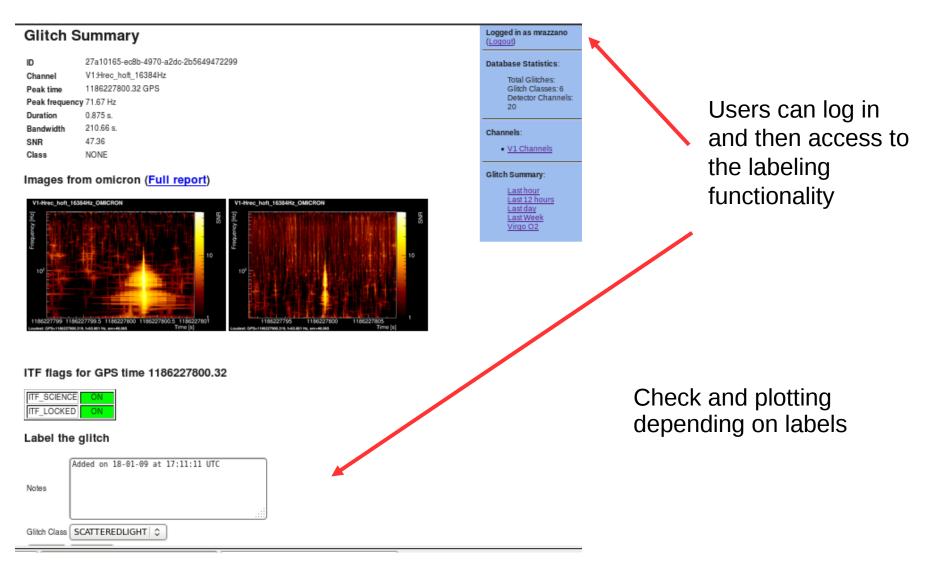

Full CNN stack

Interactive Glitch Web Catalog

- Web tool to interactively work on glitches
- Main goals
 - Database for glitches
 - Interface with Omicron (and other pipelines if needed)
 - Quick look & quick analysis
 - Label glitches
 - Store automatic glitch classification
- Developed in Python + Django + MySQL
- Tested and working on Virgo glitches

Interactive Glitch Web Catalog

Accessible online at a EGO machine



panel

With global statistics

Label glitches

By clicking in the plots or in the search results, a summary of the glitch is visible

Conclusions and next steps

- Machine and deep learning methods are growing fast in GW community
- We have tested and developed image-based deep learning for classification of noise glitches
- Time-frequency images as input data
- Tested on simulatons & real data
 - Run on small GPU hardware
 - High accuracy
- Also interact with other ML techniques (e.g. Elena's WDFX)
- Toward a real-time pipeline