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Research	focus
• Development of predictive models, where data are continuously
produced at regular time intervals by sensors placed on geo-
referenced nodes.

• The goal is to predict the values assumed by a target feature of
interest in the following time instants (few minutes to few days
ahead).

Issues	and	challenges

• Spatial and temporal autocorrelation introduced by spatial
proximity of nodes and the cyclical nature of the days

• Noisy data (outliers / missing values due to fault on sensors)

• Abundance of large-scale data



Applications	with	Sensor	Data

Predictive	modeling	of	renewable	energy	production
• For a network of photovoltaic (PV) plants spread over a

defined geographical area and connected to a power grid
• Exploiting historical data and real time data of production,

continuously produced at regular time intervals by
sensors placed on each plant of interest

• Exploiting weather and irradiance predictions

Online anomaly detection and repair for sensor data
in energy plants
• To guarantee accurate predictions in presence of noisy or

missing data

Practical importance in smart grids
• Grid integration
• Load balancing
• Energy trading



Self-Organizing	Maps:
overview,	possible	tasks	and	

applications



Self-Organizing	Map	(SOM)
Popular algorithm for unsupervised analysis of
data, exploited for a variety of tasks such as
exploratory analysis, financial diagnosis, fraud
detection, etc.
Maps a high-dimensional input data onto a 2D (or
3D) grid (feature map) of neurons.

Limitations
• Static architecture
• Shape and number of neurons in the feature

map needs to be determined before the
training.

Growing	Hierarchical	Self-
Organizing	Map	(GHSOM)
Multi-level tree-like architecture
consisting of individual SOMs



Self-Organizing	Maps
Recent	research	works
• Hsu (2006) extended SOM algorithm for categorical data;
• Ippoliti et al. (2012) presented an online method for network anomaly

detection exploiting GHSOMmodels;
• Huang et al. (2012) introduced a predictive approach for the binary

classification setting tested on KDD CUP 1999 dataset;
• Quintian et al. (2014) proposed a hybrid regression system for solar

energy prediction in which SOM models are used for clustering,
subsequently exploited by local models;

• Sarazin et al. (2014) proposed a distributed biclustering algorithm for
Apache Spark based on the SOMmodel.

• Zurita et al. (2018) exploit SOM to model the operating conditions of
an industrial process reflected by available auxiliary time series.



GHSOM	Algorithm
Parameters: epochs, τ1 , τ2

• Level-0 neuron: mqe0 is calculated
with respect to all the input
instances

• First neuron map m1 is created at
Level-1 consisting of 2×2 neurons

• m1 trained using the conventional
SOM training process (competitive
learning)

Mean Quantization
Error (MQE) of a
neuron is the total
deviation of the neuron
from its mapped input
instances.

τ1 controls the growth
process

τ2 controls the minimum
granularity of data
expected to be
represented by each
neuron.



Training	process
For	a	specified	number	of	epochs:
• For each instance from training data, the

neuron with the minimum distance from
each input instance is selected as the
winner neuron c

• c and its surrounding neighbour neurons
are adapted towards the input instance.

GHSOM	Algorithm

Neuron adaptation

• hck(t) is the neighbourhood factor for a
neuron mk with respect to the winner neuron
c for input instance x(t) presented at time t.

• Map m is analysed and MQEm is computed. m
grows until the following criterion is satisfied:

MQEm < τ1 · mqep
MQE of the parent neuron p
from which this map m is
expanded



Growing	process
• The neuron with the highest MQE is

identified as the error neuron e.
• Its most dissimilar direct

neighbouring neuron d is selected
and a new row (or column) is
inserted between e and d.

• Vectors of new neurons are
initialized as the average of the
weight vectors of their adjacent
neighbours.

• The grown layer is trained and
analysed again.

GHSOM	Algorithm



Hierarchical growth process
• Once the τ1 criterion is satisfied, each neuron in the map is

analysed according to this criterion:
mqek < τ2 · mqe0

• The neurons which do not satisfy the τ2 criterion are expanded into
new maps at the next level of hierarchy (same process of training,
growth and hierarchical expansion as the level-1 map).

• The training of the GHSOM stops when all the neurons in the
lowest level maps satisfy the τ2 criterion.

• The resulting GHSOM structure thus contains multiple SOM layers
arranged in a hierarchy with each SOM representing the data at a
finer granularity than its parent layer.

GHSOM	Algorithm
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● Distance hierarchy
approach to modify the
optimization function of
GHSOM so that it can
(also) coherently handle
mixed-attribute datasets.

● Distributed
implementation of
GHSOM in Apache Spark:
it formulates the training
process, including the
two-dimensional growth
and the hierarchical
growth process adopting
map and reduceByKey
functions.

Spark-GHSOM:	Contributions
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Training time
- Keep track of the target value of labeled instances in the

respective winner neuron
- Assign one definitive target value to each neuron, calculated

as the average of all assignments received during the training
process

Testing time
- Given an instance x, for each SOM, find the closest neuron c

with a target attribute value cy assigned, and add it to a
candidate list C

- Choose the closest neuron c in C w.r.t x in terms of Euclidean
distance

- Assign its target value: xy = cy

Spark-GHSOM:	Predictive	Module



Spark-GHSOM:	Experimental	Results
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Qualitative	results Quantitative	results
Census	data

Microarray	data

Sensor	data	forecasting

Regression	with	mixed	attributes
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KDD CUP 1999 dataset. Stress
test with a fixed configuration of
the parameters τ1= 0.5, τ2= 0.5
and epochs= 15.

Spark-GHSOM:	Experimental	Results
Scalability	results



Auto-Encoders:
overview,	possible	tasks	

and	applications
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Auto-Encoders
Auto-Encoders	learn	to	reconstruct	a	given	input	representation	with	
a	low	reconstruction	error.

A	suitable	way	to	learn	an	auto-encoder	consists	in	layer-wise	back-
propagation	learning.

Each	auto-encoder	has	an	encoding	function	γ and	a	decoding	
function	δ such	that:	



Decoding	stage	(one	hidden	layer)

The	decoding	stage	reconstructs	x from	z as:

such	that	the	following	loss	is	minimized:

Encoding	stage	(one	hidden	layer)

Takes	the	input	x∈Rd =X	and	maps	it	to	an	hidden	representation	z∈Rp

=F	

Where	σ is	a	sigmoid	or	a	rectified	linear	unit	activation	function,	W is	a	
weight	matrix	and	b is	a	bias	vector.

Auto-Encoders



Auto-Encoders	vs	Stacked	Auto-Encoders



Auto-Encoders:	Possible	tasks
Anomaly detection
• Once the auto-encoder is trained
with non-anomalous data, a high
reconstruction error for a new
instance means that it is possibly an
anomaly.

Clustering
• Non-linear auto-encoders build
multiple-local-valley representations
of the underlying domain.

• Instances with similar values of
reconstruction error may imply that
they belong to the same cluster.



Auto-Encoders:	Possible	tasks
Recognition-based classification
• Once trained with data belonging to the

positive class, if the reconstruction error is
lower than a threshold for an unseen
example, it belongs to the positive class,
otherwise it belongs to the negative class.

Concept learning prior to classification or
regression
• Perform layer-wise pre-training
• Trained layers can be copied to other

neural network models (a new model with
one output neuron for classification)

• Pre-training should initialize the weights
closer to good solutions (see Larochelle et
al. 2009)



Feature extraction
• After training, extract a set of

features of reduced dimensionality
(embedding features) exploiting the
encoding function.

• Reduced dimensionality implies
model compactness and possible
mitigation of collinearity effects,
similarly to Principal Component
Analysis (PCA).

Note: Auto-encoder embedding features are equivalent to PCA just if the
hidden layer has linear activations (see Japkowicz et al. 2000)

Auto-Encoders:	Possible	tasks



Stacked	Auto-Encoders	in	Apache	Spark
Code	example	in	Scala

https://github.com/avulanov/scalable-deeplearning



Anomaly	Detection	and	Repair	for	
Accurate	Predictions	in	Geo-

distributed	Big	Data

Research carried out during a visiting period at American
University in Washington D.C under the supervision of Prof.
Nathalie Japkowicz.



Anomaly	Detection	and	Repair	for	Accurate	
Predictions	in	Geo-distributed	Big	Data
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- Auto-encoder based
anomaly detection

- Non-selective and
selective data repair
exploiting normal
instances from other
sites, using a
closeness factor,
dependent from the
spatial distance
between sites
locations (in km).

Anomaly Detection and Repair for Accurate Predictions in Geo-distributed Big Data
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Anomaly	Detection

Anomaly Detection and Repair for Accurate Predictions in Geo-distributed Big Data

k-NN based

Training phase
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Anomaly	Detection

Anomaly Detection and Repair for Accurate Predictions in Geo-distributed Big Data

k-NN based

Detection phase
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Data	Repair

Anomaly Detection and Repair for Accurate Predictions in Geo-distributed Big Data

Non-selective: Entire instance x
(all features) repaired exploiting non-
anomalous instances of other sites
by a weighted average.

Selective: For each feature of an
anomalous instance x, it is detected
whether the observed value is
abnormal, querying for each site its
historical data at the same hour of
the same month.

The weight is defined by a pairwise
closeness function (in km) between
the locations.
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Feature	Extraction	and	Prediction	
Gradient Boosted Trees (GBTs) are chosen as prediction model, for
their demonstrated performances in predictive modeling tasks, also
in the context of energy forecasting (Huang et al, Persson et al).

We compare predictive performances obtained considering different
experimental settings:
● Noisy data
● Repaired data
● Repaired data + Feature Extraction

Two Noise Levels:

{25%,	50%}	x	{Instance	Noise	Rate	(INR),	Feature	Noise	Rate	(FNR)}

Feature extraction is performed exploiting the encoding function of
the Auto-Encoder trained beforehand.

Anomaly Detection and Repair for Accurate Predictions in Geo-distributed Big Data



Experimental	Results
One-day-ahead	power	forecasting
PV	Italy	dataset

Anomaly Detection and Repair for Accurate Predictions in Geo-distributed Big Data



Experimental	Results
One-day-ahead	power	forecasting
Wind	NREL	dataset

Anomaly Detection and Repair for Accurate Predictions in Geo-distributed Big Data



Experimental	Results
Scalability
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Long	Short-Term	Memory	neural	networks:
overview,	possible	tasks	and	applications
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LSTM	Neural	Networks
Overview

• Long Short-Term Memory networks (LSTM) are Recurrent Neural
Networks that use memory to process sequences of inputs, and are
capable of learning long-term dependencies.

• LSTM prevent backpropagated errors from vanishing or exploding.

• All recurrent neural networks have the form of a chain of repeating
modules of neural network. In standard RNNs, this repeating
module will have a very simple structure, such as a single tanh layer.

• LSTMs also have this chain like structure, but the repeating module
has a different structure. Instead of having a single neural network
layer, there are four, interacting in a very special way.
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• Recurrent Neural Networks (RNN)

• Long Short-Term Memory networks (LSTM)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM	Neural	Networks
Overview
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• Cell state: It runs straight down the entire chain, with only some minor
linear interactions.

• The LSTM does have the ability to remove or add information to the cell
state, carefully regulated by structures called gates.

• Gates: A way to optionally let information through. They are composed
out of a sigmoid neural net layer and a pointwise multiplication
operation.

• The sigmoid layer outputs numbers between zero and one, describing
how much of each component should be let through.

• An LSTM has three of these gates, to protect and control the cell state.

LSTM	Neural	Networks
Overview
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• The first step in our LSTM is to decide what information has to be

discarded from the cell state.

• This decision is made by a sigmoid layer called the “forget gate layer”

• It looks at ht−1 and xt, and outputs a number between 0 and 1 for each

number in the cell state Ct−1.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM	Neural	Networks
Overview
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• The	next	step	is	to	decide	what	new	information	to	store	in	the	cell	state.	

• First,	a	sigmoid	layer	called	“input	gate	layer”	decides	which	values	to	update.	

• Next,	a	tanh	layer	creates	a	vector	of	new	candidate	values,	C\t,	 that	could	be	

added	to	the	state.	

• These	two	are	combined	to	create	an	update	to	the	state.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM	Neural	Networks
Overview
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• The	 old	 cell	 state,	Ct−1	 is	 updated	 into	 the	 new	 cell	 state	Ct.	 The	 previous	

steps	already	decided	what	to	do,	we	just	need	to	actually	do	it.

• We	multiply	 the	old	 state	by	 ft,	 forgetting	 the	 things	we	decided	 to	 forget	

earlier.	Then	we	add	it	*	C\t.	

• This	is	the	new	candidate	values,	scaled	by	how	much	we	decided	to	update	

each	state	value.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM	Neural	Networks
Overview
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• Finally,	the	output	will	be	based	on	a	filtered	version	of	the	cell	state.	

• First,	we	run	a	sigmoid	 layer	which	decides	what	parts	of	the	cell	state	we’re	

going	to	output.	

• Then,	we	put	the	cell	state	through	tanh	to	push	the	values	to	be	between	−1	

and	1,	and	multiply	it	by	the	output	of	the	sigmoid	gate,	so	that	we	only	output	

the	parts	we	decided	to.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM	Neural	Networks
Overview



LSTM	Neural	Networks	in	Keras
Code	example	in	Python

https://keras.io/
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New	York	Stock	Exchange	dataset
• 7195 stocks
• Time	range:	1970-01-02 to	2017-11-09.
• Features each stock:

• Timestamp – Open	– Close	– High	– Low –
Adjusted close – Volume

• Selected	time	range:	dal	2010-
01-04 al 2017-11-09.

• 2337 stocks	selected.	Each	time	
series	(stock)	with	1978
observations.

• Technical	analysis	indicators:
– Simple	and	Exponential	

Moving	Average
– Stochastic	Oscillator
– Relative	Strength	Index
– Rate	of	change
– Momentum

LSTM	Neural	Networks	for	Stock	Market	Forecasting



LSTM	Neural	Networks	for	Stock	Market	Forecasting	
Experimental Results
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LSTM (vertical dataset) LSTM (horizontal dataset) VAR Model 

0.000146 0.055504 0.000518 

LSTM (vertical dataset) LSTM (horizontal dataset) VAR Model 

0.009253128 0.233942064 0.022101298

§Root Mean Square Error (RMSE)

§ Mean Absolute Error (MAE)
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Energy forecasting
• CECI M, CORIZZO R, FUMAROLA F, MALERBA D, RASHKOVSKA A: Predictive modeling

of PV energy production: How to Set Up the Learning Task for a Better Prediction?
IEEE Transactions on Industrial Informatics Vol. 13, Issue 3, June 2017 (DOI:
10.1109/TII.2016.2604758)

• CECI M, CORIZZO R, MALERBA D, RASHKOVSKA A: Spatial Autocorrelation and
Entropy for Renewable Energy Forecasting. Data Mining and Knowledge Discovery
(2019) – in press (Special Issue on Data Mining for Geosciences - DOI:
10.1007/s10618-018-0605-7)

Distributed Growing Self-Organizing Maps
• MALONDKAR A, CORIZZO R, KIRINGA I, CECI M, JAPKOWICZ N: Spark-GHSOM:

Growing Hierarchical Self Organizing Map for Large Scale Mixed Attribute Datasets
Information Sciences (2018)

Anomaly detection, repair and feature extraction in smart grids
• CORIZZO R, CECI M, JAPKOWICZ N: Anomaly Detection and Repair for Accurate

Predictions in Geo-Distributed Big Data. Big Data Research (under review)

Publications



Thanks	for	your	attention
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