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What is Machine Learning ?
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* Machine learning is an application of artificial intelligence (Al) that provides systems the ability
to automatically learn and improve from experience without being explicitly programmed.

* Machine learning focuses on the development of computer programs that can access data
and use it learn for themselves.

e The process of learning begins with observations or data, such as examples, direct
experience, or instruction, in order to look for patterns in data and make better decisions in

the future based on the examples that we provide.

» Data Mining: Tools for extracting unknown patterns or information from large data sets

From: https://www.expertsystem.com/machine-learning-definition/
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Outline

* |Important topics in seismology
e General problem

* Jopics addressed through ML
e Activities at INGV

NB The presentation is based primarily on the recent review article by Kong, Trugman,
Ross, Bianco, Meade, Gerstoft (2018). Machine Learning in Seismology: Turning Data
into Insights, SRL, DOI: https://doi.org/10.1785/0220180259
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Important topics In
seismology

* Detection (earthquakes and other phenomena generating
seismic waves)

* Picking of seismic phases (seismic location using standard
methodologies, tomography)

 Earthquake Early Warning
* Inversion/tomography of seismic data for the Earth’s interior
e Estimation/prediction of ground shaking

* Massive seismic waveform data sets mining, clustering and
dimensionality reduction
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What seismology can
provide

* Raw data (observed seismic waveforms, GNSS high
accuracy positioning data)

 Databases of information resulting from the analysis of
raw data (i.e., labeled data)

- earthquakes direct measurements (phases, ground
motion amplitudes and durations)

- earthquakes ‘“inverse modeling” (location, magnitude(s),
moment tensor, fault plane solutions, small number of
finite fault solutions)
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INGV Data

e Raw seismic data (~150 TB)

 Databases of information resulting from the analysis of
raw data (i.e., labeled data)

- ~92,000 Earthquakes M=2

- ~2M between P and S phases

- >25,000 strong ground motion measurements M=4
- ~4,000 ShakeMaps

- ~650 moment tensors in Italy (M=3.6)

1st Conference on Machine Learning for Gravitational Waves, Geophysics, Robotics, Control Systems and CA17137 MC2
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ML general

Problem

Labeled
data?

Supervised Unsupervised
learning learning

Category_~Category or _Quantity Group Group or Lower
quantity lower dim. dimension
. ] _ Dimensionality
Classification Regression Clustering .
reduction
Neural network Support vector machine K-means
Logistic regression Neural network Gaussian mixture PCA
Random forest Ridge regression DBSCAN LDA
Naive Bayes Random forest Spectral clustering Isomap
Support vector machine Lasso Hierarchical clustering Autoencoder

Kong et al. (2018), Machine Learning in Seismology: Turning Data into Insights, Seismological Research Letters, 90(1), 3-14, doi:10.1785/0220180259.
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Selecting a machine
learning approach

e How much data ?
e |s the data labeled ?

e What is the modeling goal ?
- |ldentify structure in the data
or
- Make predictions
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Selecting a machine learning approach

How much data? What is your modeling task?
|dentify structure in data Make predictions from data
4 a ( A
Data Minin .
Very large == 5 Deep Learning
= Association / Pattern Mining
. Anoma|)' Detection Reinforcement . .
, Supervised Learning
Laree == | [ U i<ed A Learning
& nsuper.wse o " Predictive Modeling
Learning Prediction " Regression
= Clustering = Control P
: N : = Classification
Small == S Dimensionality Reduction I y
\. J \. J
I I I
I | |
No (or limited) Yes (feedback only) Yes

Is the data labeled?

from Bergen (2018) “Improving earthquake detection with data mining & machine learning ” presented at “IRIS 2018 workshop” held in Albuquerque,
USA (June 12-14, 2018)
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Why seismology can benefit
from ML ?

v Massive seismic data sets
v New ML algorithms and models
v Improved technology both HW and SW
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Massive seismic data sets

IRIS DMC Archive
as of 1Jan 2019
511.5 terabytes

A e - - R A e e A e - b B A A e S e B

WGSN mPortable (PASSCAL, SEIS-UK, OBSIP, SSMOB) m EarthScope MWFDSN ®international ®USRegonal wEngineering ™ Other

Li, Z., Z. Peng, X. Meng, A. Inbal, Y. Xie, D. Hollis, and J.-P. Ampuero _ L . . . .
(2015), Matched Filter Detection of Microseismicity in Long Beach https://ds.iris.edu/files/stats/data/archive/Archive_Growth.jpg

with a 5200-station Dense Array, DOI: 10.1190/
segam2015-5924260.1.
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Submarine cables
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PECN From Marra et al. (2018) Ultrastable laser interferometry for earthﬂ‘uakg . o : :
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New ML algorithms and models

Input
windowed
waveform

®0® .0 samples
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Perol, T., et al. (2018), Convolutional neural network for earthquake
detection and location, Science Advances, 4(2), e1700578, doi:
10.1126/sciadv.1700578.
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fully connected 1 m
127 classes

| output class scores: 1 “no event”, 50 distance, 20 magnitude, 20 depth, 36 azimuth |

Lomax, et al. (2019). An investigation of rapid earthquake
characterization using single-station waveforms and a
convolutional neural network, in press in SRL

From Woollam et al. (2019). Convolutional Neural Network for
Seismic Phase Classification, Performance Demonstration
over a Local Seismic Network, in press SRL.
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Improved technology both HW and SW

GPU hard-ware
Technology

Open Source software ML
Technology

é Caffe2

B Microsoft | Cognitive Toolkit

e | a S . E! ramework
< ) Py I OrCh https://opensource.com/article/18/5/top-8-open-source-ai-

technologies-machine-learning
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General problem in
seismology

@ Extracting information from continuous waveforms
= detect, locate and estimate the size of earthquakes

= detect and locate and estimate the size of other
phenomena (not earthquakes in the proper sense)

- internal to the Earth (e.qg., tremors, slow earthquakes, other
phenomena induced by fast enough relative movements
within the Earth)

- outside the solid Earth (e.g., from the atmosphere)
- anthropogenic
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Examples of anthropogenic signal

a) Gubbio (GB) area b) 04 Jun. 2012, 03:34:37 UTC ¢)
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c,yf; N Iw " ” ~ i T s Y B \®RG
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(% :
Qt.;,mi’arese Como :°>’ 2 Figure 1. Epicentral map of earthquakes with magnitude lower than 1.0,
I 100 nm/s EW « recorded in ltaly by the Istituto Nazionale di Geofisica e Vulcanologia
M0 km | c%” (INGV) network from 2005 to date (red dots, 26,460 events). Black boxes
% : indicate the location of the regions where we detected low-frequency
0 > 10 15 20 S 12 5 10 20 (LF) events from 2010 to 2012: Varese (VR), Pordenone (PN), Padova (PD),
Time (s) Frequency (Hz) Arezzo (AR), Gubbio (GB), Sesto Campano (SC), Potenza (PZ), Matera
(MT), and Ragusa (RG). Green diamonds are the location of the 57 full-
) _ ) _ cycle cement factories active in Italy in 2010 [source AITEC, Associazione
Latorre et al. (2014), Man-induced low-frequency seismic events in ltaliana Tecnico Economica Cemento, http://www.aitecweb.com, last
ltaly, Geophys. Res. Lett., doi:10.1002/(ISSN)1944-8007. accessed August 2014].
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Earthquake Detection and Phase
Picking
* Earthquake detection and identification of source region without picking

- Convolutional Neural Network to detect and locate single-station (Perol et al., 2018,
Lomax et al., 2018)

- Convolutional Neural Network to locate clusters using multi-station (Kriegerowski et al.,
2019)

- FAST, Fingerprinting and Similarity Thresholding (FAST) algorithm (Yoon et al., 2015;
Bergen and Beroza, 2018) is a data mining approach that converts an entire continuous
waveform dataset into a database of binary fingerprints (NOT ML).

* Phase picking capabilities

- early work on P- and S-wave picking using neural networks (e.g., Chiaruttini et al., 1989; Mousset et al.,
1996; Dai and MacBeth, 1995, 1997; Zhao and Takano, 1999; Enescu, 1996; Wang and Teng, 1995; 1997; Gentili & Michelini, 2006)

- recent work with

- Generalized Phase Detection (Ross et al., 2018a,b)

- PhaseNet (Zhu and Beroza, 2018)

- Seismic Event and Phase Detection Using Time-Frequency Representation and CNN
(Dokht et al., 2019).

- CNN for phase identification (Wollam et al., 2019)
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Convolutional Neural Network to detect and locate
without any phase picking (only single station waveforms)

(a) MuS.2 CENTRAL ITALY 2000-04-09T19:38 15890000 Lat 42,5157 Lon 13,3575 Depth 14.5hm

I Kansas ’ Magnitude tirve 5 2 451, 0048) Depth (trwe 14 Skm, 3 18 6km, 022 Bm)
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b ) M=5.2 ROMANIA 2009-04-25T17:18:48.870000 Lat:45.7039 Lon 26.5365 Depth: 102 4km
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= distance
Detection and Classification to areas = azimuth

. - magnitude
Perol, T., et al. (2018), Convolutional neural network for
earthquake detection and location, Science Advances, 4(2), - depth

e1700578, doi:10.1126/sciadv. 1700578, Lomax, et al. (2019). An investigation of rapid earthquake characterization using

single-station waveforms and a convolutional neural network, in press in SRL
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Phase picking capabilities:
Very early work -> 1989

228 C. Chiaruttini et al.

Chiaruttini, C., V. Roberto, and F. Saitta (1989), Artificial
intelligence techniques in seismic signal
interpretation, Geophys. J. Int, 223-232.
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Figure 3. A clear local event recorded by the North-Eastern Italy Seismomet
noise are not shown; the black vertical arrows indicate the arrival times of Pg |
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Phase picking capabilities: PhaseNet

g 25 — b PhaseNet is trained on the prodigious available data set
g o] — — provided by analyst-labelled P and S arrival times from the
< =231 Northern California Earthquake Data Center. The data set
g 10 — we use contains more than 700,000 waveform samples
;é R = extracted from over 30 yr of earthquake recordings.
& —101

...PhaseNet achieves much higher picking accuracy and
g 25 — recall rate than existing methods when applied to the
El_z:_ — waveforms of known earthquakes, which has the potential
) to increase the number of S-wave observations
21.01 — dramatically over what is currently available. This will
§°‘5‘ o enable both improved locations and improved shear wave
00 moordriemmmmm ot st — velocity models.
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Phase picking capabilities: Generalized Phase
Detection

(@) [ Inputwaveforms ) Feature extraction system
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Ross, Z. E., M.-A. Meier, E. Hauksson, and T. H. Heaton (2018). Generalized seismic phase detection

with deep learning, Bull. Seismol. Soc. Am. doi: 10.1785/0120180080.

/{')}. ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA 1st Conference on Machine Learning for Gravitational Waves, Geophysics, Robotics, Control Systems and CA17137 MC2
) 54 meeting, Pisa, January 14-16, 2019



EEW and Real-Time ML

(a) Smartphone recordings NN implemented on smartphones
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o from Kong et al., 2018 SRL,
(b) Lo (C) . Distance versus NN trigger time 90(1)’ 3-1 4, doi:
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A Figure 5. The NN used in the MyShake earthquake early waming (EEW) phone application. (a) The workflow of the NN algorithm on
the phone, including extraction of features from recorded phone motion and implementation of an NN classifier to distinguish between
motions from humans and earthquakes. (b) The interquartile range and maximum zero crossing rate are two important features for
distinguishing between earthquake and nonearthquake motions (modified from Kong, Allen, Schreier, et al,, 2016). (c) Example application

PN of MyShake at the network level to an M 4.4 earthquake that occurred in January 2018. NN triggers from individual users are compared
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EEW and Real-Time ML (2)

Real-time analysis Random forest
*
phone/cloud Cloud server
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MyShake users O is running on the waveform database

to pick the waveforms from earthquakes

Input

A Figure 1. Sketch overview of the MyShake system and the machine learning (ML) algorithms that are currently used or under testing in

the system both in real time and offline modes. DBSCAN, density-based spatial clustering of applications with noise; PGA, peak ground
acceleration. The color version of this figure is available only in the electronic edition.

from: Kong, Q., A. Inbal, R. M. Allen, Q. Lv, and A. Puder (2018), Machine Learning Aspects of the MyShake
Global Smartphone Seismic Network, Seismological Research Letters, 1-7, doi:10.1785/0220180309.
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Ground-Motion Prediction Using
Supervised Learning

The classical approach to ground-motion prediction uses linear regression to
model the first-order aspects of these effects (Campbell and Bozorgnia, 2008).

- input to the NN are M, V5,30, resonant frequency, source depth, Rhypo or Repi
- trained with natural log of the recorded amplitude [PGA, PGV, SA(T)]

- Earlier work done by

- Alavi and Gandomi (2011)
- Derras et al. (2012)

Y
)
v

D

" ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA 1st Conference on Machine Learning for Gravitational Waves, Geophysics, Robotics, Control Systems and CA17137 MC2

4
[/ 7
L |

meeting, Pisa, January 14-16, 2019



D

D

4
[/ 7
L |

Ground-Motion Prediction Using
Supervised Learning (2)

- Recent work
- Derras et al. (2014 and 2016) NN with a single hidden layer to predict peak
ground acceleration, velocity and pseudospectral accelerations at periods of
interest for structural design.

- Alimoradi and Beck (2014) developed a technique to synthesize realistic
strong-motion records by applying Gaussian process regression to a sparse,
orthonormal set of basis vectors called eigenquakes, which represent
characteristic earthquake records.

- Khosravikia et al. (2018)

- Trugman and Shearer (2018) used a generalization of the random forest
supervised learning algorithm to relate earthquake stress drop and PGA (5297
earthquakes M1-4). The event residual terms learned by the random forest GMPE
have a physical basis in the variability in earthquake stress drop, highlighting the
utility of ML techniques in ground-motion modeling.

- Khoshnevis and Taborda (2019) ANN to estimate peak ground velocity
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Ground-Motion Prediction Using
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A Figure 7. Intensity measure to distance relations of the GMMs determined in this study in comparison with Hassani and Atkinson (2015,
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hereafter, HA15) GMMs developed for central and eastern North America, Atkinson (2015; hereafter, A15) GMMs developed for small to

moderate events at short hypocentral distances with applicability to induc ed seismicity, and Boore et al. (2014; hereafter, BSSA14) devel-
oped as part of the Next Generation Attenuation-West2 project. All GMMs are plotted for V gy = 760 m/s as well as M, = 3.7 for (a) and
M,, = 53 for (b). The color version of this figure is available only in the electronic edition.

from: Khosravikia et al (2019) Artificial Neural Network—-Based Framework for Developing Ground-

Motion Models for Natural and Induced Earthquakes in Oklahoma, Kansas, and Texas
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Ground-Motion Prediction Using
Supervised Learning

Input ground motion data

(feature and target variables) Random forest ground-motion prediction equation (GMPE; Trugman
'a”d"mb°°““"p'f:c”,j‘:!;ijjjit°ea°h“ee‘““"“' and Shearer, 2018) and earthquake stress drop versus peak ground
;f;gfefgggg acceleration (PGA). (a) Schematic workflow for training the random

A @ using rendornized A A forest GMPE. (b) PGA versus hypocentral distance for seismicity in
and split levels /"\ -1 the San Francisco Bay Area. Each point represents a site-corrected

m m PGA measurement from an earthquake at a single station. Also
Aggregate S —— tre shown is the median value in equally spaced magnitude—distance

bins (large markers) and predicted values from the random forest
GMPE (dashed lines). (c) Event PGA residuals learned from random
forest GMPE versus earthquake stress drop. The least-squares linear
fit and correlation coefficients are marked for reference.

The random forest takes
an ensemble average over
the set of B regression trees

Output random forest
model predlctlon

Event terms (APGA) and Station terms (AS) are
|terat|ve|y learned from the model residuals

(b = Random forest
Q M:3.40-3.80 median (C) [r"‘ 1

__ 10! (\ : xz.so—a.OOmejian T |r( ]W { ﬂ o=

<\l\g - \‘\ A M:2.20-2.60 median (<D |og(1££fe(;,:m ngg)o 2? |OQ10AU. ]

P % y d

T 100 ] 1

E 13 ol from Trugman, D. T., and P. M. Shearer (2018). Strong

3 (& - - correlation between stress drop and peak ground

g 107 | 5 3 acceleration for eecent M 1-4 earth- quakes in the San

§ 2 ) Francisco bay area, Bull. Seismol. Soc. Am. 108, no.

g I 2, 929-945
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Model inversion/tomography with ML
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A Figure 7. Locally sparse travel-ime tomography (LST; Bianco and Gerstoft, 2018) of checkerboard slowness. (a) Synthetic checker-
board slowness patterns with 100 x 100 pixel grid (km) are sampled by (b) 2016 straight rays from 64 seismic stations. (c) Conventional
inversion using damping and smoothing regularization (Aster et al, 2011) and (d) LST. Profiles from the 2D inversion are shown with true

and estimated slownesses. The root mean square error (ms/km) estimated relative to the true slowness is printed on the 2D estimates.
(e) Dictionary learned from LST contains checkerboard-like atom (100 atoms shown). Each atom (patch) is 10 x 10 pixels.
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Other applications

Machine Learning Predicts Laboratory Machine learning meets seismic
Earthquakes interpretation
.§ /W @ varance O Pradictions o °O (o] ¢
O Thresnolds @ Other features o © o0 o
= = © Higher moments ° o
.
a :{'5::.' Se
o, 00 Random  ccee®*
oooooooo Forest
W
g | |
L At R T e
g - ',J—Lq_\;vjx['f\'[m rﬂr‘ﬂJ’I J\//l’l A Dradictions e Testing data
3 | £
& =
b

Experimental run tme Experimental run time

Rouet-Leduc, B., C. Hulbert, N. Lubbers, K. Barros, C. J.
Humphreys, and P. A. Johnson (2017), Machine Learning

Predicts Laboratory Earthquakes, GEOPHYSICAL https://agilescientific.com/blog/2017/6/20/
RESEARCH LETTERS, 44(18), 9276-9282, doi: machine-learning-meets-seismic-
10.1002/2017GL074677. interpretation
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Other applications (2)

Machine learning to forecast aftershock locations

“...we use a deep-learning

Chi-Chi earthquake Kobe earthquake Kashmir earthquake ROC curves . .
d=7.5km, n =348, d=7.5km,n =10, d =12.5km, n = 284, d = 0-50 km approach to identify a
a M = 1321 b x = 28 c Flr = 569 d static-stress-based criterion
08 that forecasts aftershock
F - . .
2 ACPS locations without prior
3 4 g T muonosrs  assumptions about fault
£ Mos / 2 —— Kobe orientation. We show that a
4 o = -
i 4 g AUe=05%" neural network trained on
T oos more than 131,000
0 -
02 0 rusepostverats | me!lnshoc k—aft_ershock
pairs can predict the
g o n locations of aftershocks in
08 an independent test
Neural network
- ° chicn dataset of more than
a — 1-Lhi .
g s - ;uc=0765 30,000 mainshock-
5 ||, ' 2 —— Kobe aftershock pairs more
= : S (AUC = 0.956)
€ E accurately (area under curve
g = — Kashmir .
3 muc=o0ss4 Of 0.849) than can classic
. J. 1 Coulomb failure stress
o2 False positive rate change (area under curve of
0.583)....”
DeVries, P. M. R., F. Viégas, M. Wattenberg, and B. J. Meade (2018), Deep learning of
aftershock patterns following large earthquakes, Nature, 1-16, doi:10.1038/
s41586-018-0438-y.
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