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What is Machine Learning  ? 

• Machine learning is an application of artificial intelligence (AI) that provides systems the ability 
to automatically learn and improve from experience without being explicitly programmed. 


• Machine learning focuses on the development of computer programs that can access data 
and use it learn for themselves. 


• The process of learning begins with observations or data, such as examples, direct 
experience, or instruction, in order to look for patterns in data and make better decisions in 
the future based on the examples that we provide.


• Data Mining: Tools for extracting unknown patterns or information from large data sets

From: https://www.expertsystem.com/machine-learning-definition/
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Outline

• Important topics in seismology


• General problem 


• Topics addressed through ML


• Activities at INGV

NB The presentation is based primarily on the recent review article by Kong, Trugman, 
Ross, Bianco, Meade, Gerstoft (2018). Machine Learning in Seismology: Turning Data 
into Insights, SRL, DOI: https://doi.org/10.1785/0220180259
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Important topics in 
seismology 

• Detection (earthquakes and other phenomena generating 
seismic waves) 


• Picking of seismic phases (seismic location  using standard 
methodologies, tomography)


• Earthquake Early Warning


• Inversion/tomography of seismic data for the Earth’s interior


• Estimation/prediction of ground shaking


• Massive seismic waveform data sets mining, clustering and 
dimensionality reduction


• …
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What seismology can 
provide 

• Raw data (observed seismic waveforms, GNSS high 
accuracy positioning data) 


• Databases of information resulting from the analysis of 
raw data (i.e., labeled data)


- earthquakes direct measurements (phases, ground 
motion amplitudes and durations) 

- earthquakes “inverse modeling” (location, magnitude(s), 
moment tensor, fault plane solutions, small number of 
finite fault solutions)
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INGV Data 
• Raw seismic data (~150 TB) 


• Databases of information resulting from the analysis of 
raw data (i.e., labeled data)


- ~92,000 Earthquakes M≥2 

- ~2M between P and S phases  

- >25,000 strong ground motion measurements M≥4 

- ~4,000  ShakeMaps 

- ~650 moment tensors in Italy (M≥3.6)
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ML general

Kong et al. (2018), Machine Learning in Seismology: Turning Data into Insights, Seismological Research Letters, 90(1), 3–14, doi:10.1785/0220180259.
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Selecting a machine 
learning approach

• How much data ?


• Is the data labeled ?


• What is the modeling goal ?

- Identify structure in the data


or 

- Make predictions
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Selecting a machine learning approach
What is your modeling task?

Is the data labeled?

How much data?

Reinforcement 
Learning

§ Prediction
§ Control

Yes (feedback only)

Supervised Learning

§ Predictive Modeling
§ Regression
§ Classification

Deep Learning

Make predictions from data

Yes

Data Mining
§ Association / Pattern Mining
§ Anomaly Detection

Unsupervised 
Learning

§ Clustering
§ Dimensionality Reduction

Identify structure in data

No (or limited)

Small

Very large

Large

from Bergen  (2018)  “Improving earthquake detection with data mining & machine learning ” presented at  “IRIS 2018 workshop” held in Albuquerque,  
USA (June 12-14, 2018)
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Why seismology can benefit 
from ML ?

✓Massive seismic data sets

✓New ML algorithms and models

✓ Improved technology both HW and SW
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Massive seismic data sets

Li, Z., Z. Peng, X. Meng, A. Inbal, Y. Xie, D. Hollis, and J.-P. Ampuero 
(2015), Matched Filter Detection of Microseismicity in Long Beach 
with a 5200-station Dense Array, DOI: 10.1190/
segam2015-5924260.1.

https://ds.iris.edu/files/stats/data/archive/Archive_Growth.jpg

From Marra et al. (2018) Ultrastable laser interferometry for earthquake 
detection with terrestrial and submarine cables; Science  03 Aug 2018:


Vol. 361, Issue 6401, pp. 486-490 DOI: 10.1126/science.aat4458

https://myshake.berkeley.edu
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New ML algorithms and models

Perol, T., et al. (2018), Convolutional neural network for earthquake 
detection and location, Science Advances, 4(2), e1700578, doi:
10.1126/sciadv.1700578. Lomax, et al.  (2019). An investigation of rapid earthquake 

characterization using single-station waveforms and a 
convolutional neural network, in press in SRL 


From Woollam et al. (2019). Convolutional Neural Network for 
Seismic Phase Classification, Performance Demonstration 
over a Local Seismic Network, in press SRL.
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Improved technology both HW and SW
GPU hard-ware 
Technology

https://opensource.com/article/18/5/top-8-open-source-ai-
technologies-machine-learning

Open Source software ML 
Technology
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General problem in 
seismology

๏ Extracting information from continuous waveforms

➡ detect, locate and estimate the size of earthquakes 

➡ detect and locate and estimate the size of other 

phenomena (not earthquakes in the proper sense)

- internal to the Earth (e.g., tremors, slow earthquakes, other 

phenomena induced by fast enough relative movements 
within the Earth)


- outside the solid Earth (e.g., from the atmosphere)

- anthropogenic  
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Examples of anthropogenic signal 

Latorre et al. (2014), Man‐induced low‐frequency seismic events in 
Italy, Geophys. Res. Lett., doi:10.1002/(ISSN)1944-8007.
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Earthquake Detection and Phase 
Picking 

• Earthquake detection and identification of source region without picking 


- Convolutional Neural Network to detect and locate single-station (Perol et al., 2018, 
Lomax et al., 2018)


- Convolutional Neural Network to locate clusters using multi-station (Kriegerowski et al., 
2019)


- FAST, Fingerprinting and Similarity Thresholding (FAST) algorithm (Yoon et al., 2015; 
Bergen and Beroza, 2018) is a data mining approach that converts an entire continuous 
waveform dataset into a database of binary fingerprints (NOT ML).


• Phase picking capabilities


- early work on P- and S-wave picking using neural networks (e.g., Chiaruttini et al., 1989; Mousset et al., 
1996; Dai and MacBeth, 1995, 1997; Zhao and Takano, 1999; Enescu, 1996; Wang and Teng, 1995; 1997; Gentili & Michelini, 2006)


- recent work with 


- Generalized Phase Detection (Ross et al., 2018a,b)


- PhaseNet (Zhu and Beroza, 2018)


- Seismic Event and Phase Detection Using Time–Frequency Representation and CNN 
(Dokht et al., 2019).


- CNN for phase identification (Wollam et al., 2019)
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Convolutional Neural Network to detect and locate 
without any phase picking (only single station waveforms)

Perol, T., et al. (2018), Convolutional neural network for 
earthquake detection and location, Science Advances, 4(2), 
e1700578, doi:10.1126/sciadv.1700578.

Detection and Classification to areas

Lomax, et al.  (2019). An investigation of rapid earthquake characterization using 
single-station waveforms and a convolutional neural network, in press in SRL

Detection  
Classification according to: 
- distance 
- azimuth 
- magnitude 
- depth
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Phase picking capabilities: 
Very early work -> 1989

Chiaruttini, C., V. Roberto, and F. Saitta (1989), Artificial 
intelligence techniques in seismic signal 
interpretation, Geophys. J. Int, 223–232.
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Phase picking capabilities: PhaseNet 
PhaseNet is trained on the prodigious available data set 
provided by analyst-labelled P and S arrival times from the 
Northern California Earthquake Data Center. The data set 
we use contains more than 700,000 waveform samples 
extracted from over 30 yr of earthquake recordings. 

…PhaseNet achieves much higher picking accuracy and 
recall rate than existing methods when applied to the 
waveforms of known earthquakes, which has the potential 
to increase the number of S-wave observations 
dramatically over what is currently available. This will 
enable both improved locations and improved shear wave 
velocity models.

10

(a) (b)

(c) (d)

(e) (f)

Figure 8. Examples of good pickers (�t < 0.1s) in the test dataset. The upper parts of (a) - (f)

sub-figures are the vertical components of seismograms. The lower parts are the predicted probability

distributions of P wave (P̂ ) and S wave (Ŝ). The blue and red vertical lines are the P and S arrival

times picked by analysts. While all three components are used in PhaseNet, in this and subsequent

figures, only the vertical component is shown.

Zhu and Beroza (2019). PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking 
Method, Geophys. J. Int, 216, 261-273.
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Phase picking capabilities: Generalized Phase 
Detection 

Ross, Z. E., M.-A. Meier, E. Hauksson, and T. H. Heaton (2018). Generalized seismic phase detection 
with deep learning, Bull. Seismol. Soc. Am. doi: 10.1785/0120180080.
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EEW and Real-Time ML

from Kong et al., 2018 SRL, 
90(1), 3–14, doi:
10.1785/0220180259.
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EEW and Real-Time ML (2)

from: Kong, Q., A. Inbal, R. M. Allen, Q. Lv, and A. Puder (2018), Machine Learning Aspects of the MyShake 
Global Smartphone Seismic Network, Seismological Research Letters, 1–7, doi:10.1785/0220180309.
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Ground-Motion Prediction Using 
Supervised Learning

The classical approach to ground-motion prediction uses linear regression to 
model the first-order aspects of these effects (Campbell and Bozorgnia, 2008). 


• input to the NN are M, Vs,30, resonant frequency, source depth, Rhypo or Repi  
• trained with natural log of the recorded amplitude [PGA, PGV, SA(T)]


- Earlier work done by 

- Alavi and Gandomi (2011)

- Derras et al. (2012) 
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Ground-Motion Prediction Using 
Supervised Learning (2)

- Recent work 

- Derras et al. (2014 and 2016) NN with a single hidden layer to predict peak 

ground acceleration, velocity and pseudospectral accelerations at periods of 
interest for structural design. 


- Alimoradi and Beck (2014) developed a technique to synthesize realistic 
strong-motion records by applying Gaussian process regression to a sparse, 
orthonormal set of basis vectors called eigenquakes, which represent 
characteristic earthquake records.


- Khosravikia et al. (2018) 


- Trugman and Shearer (2018) used a generalization of the random forest 
supervised learning algorithm to relate earthquake stress drop and PGA (5297 
earthquakes M1-4). The event residual terms learned by the random forest GMPE 
have a physical basis in the variability in earthquake stress drop, highlighting the 
utility of ML techniques in ground-motion modeling. 


- Khoshnevis and Taborda (2019) ANN to estimate peak ground velocity 
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Ground-Motion Prediction Using 
Supervised Learning

from: Khosravikia et al (2019) Artificial Neural Network–Based Framework for Developing Ground-
Motion Models for Natural and Induced Earthquakes in Oklahoma, Kansas, and Texas 
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Ground-Motion Prediction Using 
Supervised Learning

from Trugman, D. T., and P. M. Shearer (2018). Strong 
correlation between stress drop and peak ground 
acceleration for eecent M 1-4 earth- quakes in the San 
Francisco bay area, Bull. Seismol. Soc. Am. 108, no. 
2, 929–945 


Random forest ground‐motion prediction equation (GMPE; Trugman 
and Shearer, 2018) and earthquake stress drop versus peak ground 
acceleration (PGA). (a) Schematic workflow for training the random 
forest GMPE. (b) PGA versus hypocentral distance for seismicity in 
the San Francisco Bay Area. Each point represents a site‐corrected 
PGA measurement from an earthquake at a single station. Also 
shown is the median value in equally spaced magnitude–distance 
bins (large markers) and predicted values from the random forest 
GMPE (dashed lines). (c) Event PGA residuals learned from random 
forest GMPE versus earthquake stress drop. The least‐squares linear 
fit and correlation coefficients are marked for reference.
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Model inversion/tomography with ML
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Other applications

Rouet-Leduc, B., C. Hulbert, N. Lubbers, K. Barros, C. J. 
Humphreys, and P. A. Johnson (2017), Machine Learning 
Predicts Laboratory Earthquakes, GEOPHYSICAL 
RESEARCH LETTERS, 44(18), 9276–9282, doi:
10.1002/2017GL074677.

Machine Learning Predicts Laboratory 
Earthquakes 

Machine learning meets seismic 
interpretation

https://agilescientific.com/blog/2017/6/20/
machine-learning-meets-seismic-
interpretation
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Other applications (2)
Machine learning to forecast aftershock locations

DeVries, P. M. R., F. Viégas, M. Wattenberg, and B. J. Meade (2018), Deep learning of 
aftershock patterns following large earthquakes, Nature, 1–16, doi:10.1038/
s41586-018-0438-y.

“…we use a deep-learning 
approach to identify a 
static-stress-based criterion 
that forecasts aftershock 
locations without prior 
assumptions about fault 
orientation. We show that a 
neural network trained on 
more than 131,000 
mainshock–aftershock 
pairs can predict the 
locations of aftershocks in 
an independent test 
dataset of more than 
30,000 mainshock–
aftershock pairs more 
accurately (area under curve 
of 0.849) than can classic 
Coulomb failure stress 
change (area under curve of 
0.583). …”




1st Conference on Machine Learning for Gravitational Waves, Geophysics, Robotics, Control Systems and CA17137 MC2 
meeting, Pisa, January 14-16, 2019

INGV ML work
- Esposito, A. M., F. Giudicepietro, L. D'Auria, S. Scarpetta, M. Martini, M. Coltelli, and M. Marinaro (2008), Unsupervised 

Neural Analysis of Very-Long-Period Events at Stromboli Volcano Using the Self-Organizing Maps, BULLETIN OF THE 
SEISMOLOGICAL SOCIETY OF AMERICA, 98(5), 2449–2459.


- Esposito, A. M., L. D'Auria, F. Giudicepietro, R. Peluso, and M. Martini (2012), Automatic Recognition of Landslides 
Based on Neural Network Analysis of Seismic Signals: An Application to the Monitoring of Stromboli Volcano (Southern 
Italy), Pure and Applied Geophysics PAGEOPH, 170(11), 1821–1832, doi:10.1007/s00024-012-0614-1.


- Esposito, A. M., L. D'Auria, F. Giudicepietro, T. Caputo, and M. Martini (2013), Neural analysis of seismic data: 
applications to the monitoring of Mt. Vesuvius, Annals of Geophysics, 56(4), 0446–9, doi:10.4401/ag-6452.


- Falsaperla, S., S. Graziani, G. Nunnari, and S. Spampinato (1996), Automatic classification of volcanic earthquakes by 
using Multi-Layered neural networks, Natural Hazards, 13(3), 205–228, doi:10.1007/BF00215816.


- Falsaperla, S., B. Behncke, H. Langer, M. Neri, G. G. Salerno, S. Giammanco, E. Pecora, and E. Biale (2013), “Failed” 
eruptions revealed by pattern classification analysis of gas emission and volcanic tremor data at Mt. Etna, Italy, 
International Journal of Earth Sciences, 103(1), 297–313, doi:10.1007/s00531-013-0964-7.


- Giudicepietro, F., A. M. Esposito, and P. Ricciolino (2017), Fast Discrimination of Local Earthquakes Using a Neural 
Approach, Seismological Research Letters, 88(4), 1089–1096, doi:10.1785/0220160222.


- Langer, H., S. Falsaperla, M. Masotti, R. Campanini, S. Spampinato, and A. Messina (2009), Synopsis of supervised and 
unsupervised pattern classification techniques applied to volcanic tremor data at Mt Etna, Italy, Geophys. J. Int, 178(2), 
1132–1144, doi:10.1111/j.1365-246X.2009.04179.x.


- Langer, H., S. Falsaperla, A. Messina, S. Spampinato, and B. Behncke (2011), Detecting imminent eruptive activity at Mt 
Etna, Italy, in 2007–2008 through pattern classification of volcanic tremor data, Journal of Volcanology and Geothermal 
Research, 200(1-2), 1–17, doi:10.1016/j.jvolgeores.2010.11.019.


- Messina, A., and H. Langer (2011), Pattern recognition of volcanic tremor data on Mt. Etna (Italy) with KKAnalysis—A 
software program for unsupervised classification, Computers & Geosciences, 37(7), 953–961, doi:10.1016/j.cageo.
2011.03.015.


- Gentili, S., and A. Michelini (2006), Automatic picking of P and S phases using a neural tree, Journal of Seismology, 10(1), 
39–63, doi:10.1007/s10950-006-2296-6.
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Conclusions
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Thank you for the 
attention


