Squeezed light benches and optical alignment issues

F. Sorrentino

March 23, 2021

F. Sorrentino

Squeezed light benches - G2NET WG3 works

March 23, 2021 1 / 4

Overview

Quantum noise and squeezing

- Nature of squeezed states
- Generation of squeezed states
- Squeezed light in interferometers

Experimental challenges

- Losses
- Phase noise
- Technical noises
- RPN and frequency-dependent squeezing

3 Status and perspectives

- Implementation examples
- Ongoing and future developments

Quantum noise in GW detectors

F. Sorrentino

Quantum noise in GW detectors

• Photon Shot Noise $h_{sn}(f) = \frac{1}{L} \sqrt{\frac{\hbar c \lambda}{2\pi P}}$

• Radiation Pressure Noise $h_{rp}(f) = \frac{1}{mf^2 L} \sqrt{\frac{\hbar P}{2\pi^3 c \lambda}}$

Squeezing the EM vacuum for quantum noise reduction

- Interferometric GW detectors operate at dark fringe
- Vacuum fluctuations enter the dark port of the ITF
 - Carlton M. Caves. Quantum-mechanical noise in an interferometer. Physical Review D, **23**(8):1693, 1981
 - classical (coherent) states of light: no photon correlations
 - equal phase and amplitude fluctuations
- Quantum noise can be reduced by changing the statistical properties of vacuum optical field entering dark port
 - squeezed states of light: photon correlations
 - less phase fluctuations, more amplitude fluctuations (or vice versa)

F. Sorrentino

Quantum states of light - the quadrature picture

- A given mode of the EM (a single mode laser) has two d.o.f.
- E.g. phase and amplitude, or any linear combination

 $Q_{A} \xrightarrow{Presnel Diagram for the Electromagnetic Field} E(t) = E_0 \cos(\omega t + \varphi)$ $= P_A \cos \omega t + Q_A \sin \omega t$ $Amplitude \xrightarrow{Phase} P$

Quantum states of light - coherent states

- Representative of a classical laser field
- Equal fluctuations on both quadratures
- No correlations between photons Poissonian statistics

Quantum states of light - squeezed states

- Fluctuations are lower than in classical (coherent) states for a given quadrature (e.g. phase fluctuations)
- Fluctuations in the orthogonal quadrature must be higher than in classical states to obey uncertainty principle

Quantum states of light - squeezed vacuum

- Mean values of quantum vacuum EM field quadratures are = 0, but fluctuations are $\neq 0 \rightarrow$ zero-point energy
- Quantum vacuum fluctuations can be isotropic (classical vacuum) or anisotropic (squeezed vacuum)

Quantum states of light - squeezing factor

- Squeezing factor r describes level of squeezing and anti-squeezing
- Squeezing angle ϕ_{sqz} describes which quadrature is squeezed

- For a more realistic picture add frequency axis
- Add noise sidebands around laser carrier
- \bullet Uncorrelated sidebands \rightarrow coherent state

Squeezing in sideband picture

 \bullet Amplitude correlated sidebands \rightarrow phase-squeezed state

Squeezing in sideband picture

 \bullet Phase correlated sidebands \rightarrow amplitude-squeezed state

A recipe for squeezed light: difference frequency generation

- Correlations between IR photons from light-matter interaction
- e.g. DFG in a nonlinear material from a green pump field
- correlations between generated IR photons arise from energy/momentum conservation

 $\vec{D} = \vec{E} + \chi^{(2)}\vec{E}^2$

F. Sorrentino

Optical Parametric Amplification

- embedding the nonlinear crystal in an optical resonator
- increase the efficiency of the nonlinear process against mixing with classical vacuum

Measuring quantum field fluctuations

- beating the quantum (vacuum) field against a (bright) classical local oscillator
- equivalent to project the vacuum field's fluctuations on the classical state
- squeezing angle is tuned by via the phase difference between quantum and classical field
- balanced homodyne detector to suppress correlated noise

Basic squeezing experiment

- SHG optical resonator to generate pump beam
- MC optical resonator to suppress HOMs in homodyne detection
- OPA optical resonator
- homodyne detector for squeezing measurement

The AEI squeezer in Virgo

- Additional laser for the control of squeezing angle
- MZI to control optical pump power and stabilise squeezing level

Virgo

The AEI squeezer in Virgo

- State of the art: 15 dB squeezing
- H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, Phys. Rev. Lett. **117**, 110801

Squeezed light injection in ITF

- quantum noise in the ITF can be seen as originating from vacuum fluctuations entering the dark port
- if a squeezed vacuum is injected from the dark port, quantum noise is modified accordingly

Frequency-independent squeezed light injection in ITF

Limitations to QN reduction

• Optical losses are equivalent to mixing with classical vacuum field

Angle fluctuations of squeezed quadrature

Losses and phase noise

Technical noises

- technical noises mimic the effect of either losses or phase noise
- dark noise at detection photodiodes simply adds to shot noise
- scattered light from an external surface can recombine with the ITF carrier mode, producing a parasitic interference
- motion of the scattering surface yields optical path length changes of the scattered beam, and the effect on interference is equivalent to a phase angle jitter of the squeezing ellipse
- intensity modulations can impact low frequency noise measurement

24 /

FIS in GW detectors: current performances

- GEO600: 6 dB \longrightarrow
- aLIGO: 3.1 dB
- AdV: 3.2 dB

< 17 ▶

FIS controls in AdV: coherent control of squeezing angle

- RF sideband transmitted from OPA
- demodulated on B1 photodiode on detection bench
- error signal controls PLL frequency to lock main squeezer laser to main ITF laser

FIS controls in AdV: coarse automatic alignment

- need to minimise optical losses from misalignment and mode mismatch with ITF and OMC
- coarse AA using two cameras to stabilise the beam reflected off the FI on detection bench towards squeezer; works also when SQZ not injected

F. Sorrentino

FIS controls in AdV: fine automatic alignment

- RF DWS badly affected by HOMs on ITF carrier
- use angular dither lines on SQZ path, demodulate the CC beat on B1 downstreams OMC)

F. Sorrentino

FIS controls in AdV: fine automatic alignment

- short term alignment noise dominated by angular jitter of detection bench
- AA too slow to correct for it
- but with AA loop engaged, angular noise contributes to less than 1% rms optical losses

29 / 47

Quantum noise reduction in AdV during O3

- long-term drifts of produced squeezing
- mode matching changes
- slow rotations of squeezing ellipse
- stray light

Evidence of RPN in AdV and aLIGO

F. Sorrentino

Squeezed light benches - G2NET WG3 works

March 23, 2021 31 / 47

Limitations of frequency independent squeezing

- In principle, injecting phase-squeezed vacuum improves the sensitivity at high frequency where ITF is dominated by shot noise
- At the same time, the corresponding amplitude anti-squeezing makes radiation pressure noise at low frequencies increase
- With increasing level of injected squeezing, this advantage is reduced by the increased low frequency noise
- A broadband sensitivity enhancement would require a frequency-dependent rotation of the squeezing ellipse

F. Sorrentino

FDS and filter cavities

- Tune phase angle of squeezing ellipse vs signal frequency
- E.g. using a filter cavity with resonance width \sim crossover frequency between radiation pressure and shot noise in ITF ($\sim 50 \div 200 \text{ Hz}$)
- requirements on cavity parameters: finesse×length product $> 10^6$
- management of losses is rather challenging
- can be tailored to a single configuration of SRC

FDS implementation example: AdV+

- 300m long filter cavity with suspended mirrors
- two in-air benches for AEI squeezer and FC control sensing
- two suspended optical benches for beam delivery to FC and to ITF
- target $> 6 \, dB$ shot noise reduction without RPN increase

FC control strategy

- green beam for lock acquisition, longitudinal and angular control of FC optical link between suspended benches
- IR sub-carrier field for high-precision longitudinal (and angular) control of FC

AdV+ FDS control strategy

F. Sorrentino

Non-degenerate OPA

Quantum noise in c and d enhanced, but measuring c, one can subtract from measurement of d and obtain (conditional) squeezing.

FIS injection with EPR entanglement

Y. Ma et al., Nature Physics 13, 776 (2017)

F. Sorrentino

Auto-filtering

Given an OPA offset $\Delta,$ arm-cavity and SEC lengths can be fine-tuned to mimic filter cavity for idler

Test of finite state machine controls with the 1500W OPO squeezer at EGO $\,$

Motivation

Originally developed at EGO for FIS in AdV; 6 dB squeezing and 15 dB anti-squeezing demonstrated on April 2017. Currently being used for EPR demonstrator.

Test of finite state machine controls with the 1500W OPO squeezer at EGO $\,$

Bench lock software

Squeezed light benches - G2NET WG3 worksl

э. March 23, 2021

3

• • • • • • • • • • • •

Single cavity lock detail

Squeezed light benches - G2NET WG3 works

March 23, 2021

(日) (周) (三) (三)

43 / 47

э

Example of cavity lock

Squeezed light benches - G2NET WG3 works

- K 🖻 March 23, 2021

Image: A math a math

44 / 47

э

Quality of service

- main challenges are to protect squeezed states from degradation inside ITF
 - losses
 - phase noise
 - technical noises (e.g. stray light)
- qualitatively similar to well known problems for ITF control and noise mitigation
- several methods discussed at this workshop would well apply
 - $\bullet\,$ mitigation of losses from mode mismatch on ITF \rightarrow Rob's talk
 - $\bullet\,$ mitigation of phase noise from stray light couplings $\rightarrow\,$ Gabriele's talk
 - $\bullet\,$ automation of complex control systems \rightarrow Diego's talk
- challenges with FDS will substantially grow
 - largely increased complexity of optical setup and control system (filter cavity, suspended optics, SRC in Virgo)
 - exponential sensitivity of squeezing to degradation mechanisms
- quantum optics is an interesting playground for ML beyond the GW detectors (engineering of quantum states, quantum neural networks)

March 23, 2021 46 / 47

The End

Squeezed light benches - G2NET WG3 worksl

• • • • • • • •

2