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Gravitational waves

Typical strain of 10-22 around 100 Hz.

Image credit: ESA Image credit: LIGO/Caltech/MIT/R. Hurt (IPAC)
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Detectors

LIGO-Hanford

LIGO-Livingston

Virgo
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Detectors - II

LIGO-Virgo O3a representative sensitivity spectrum 

GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, LIGO Scientific and Virgo 
Collaborations ( R. Abbott et al.) e-Print:  2010.14527 [gr-qc]

https://arxiv.org/abs/2010.14527
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Enhancing Gravitational-Wave Science with Machine Learning, Elena Cuoco et al. Mach.Learn.Sci.Tech. 2 (2021) 1, 011002

https://doi.org/10.1088/2632-2153/abb93a
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Signals are typically buried in the noise
Enhancing Gravitational-Wave Science with Machine Learning, Elena Cuoco et al. Mach.Learn.Sci.Tech. 2 (2021) 1, 011002

https://doi.org/10.1088/2632-2153/abb93a
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Detector noise

Non-Gaussian and non-stationary on 
short- and long-time scales
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Non-Gaussian and non-stationary on 
short-time and long-time scales

Detector noise
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Background reduction

Why do we want to de-noise?

Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run, LIGO 
Scientific and Virgo Collaborations (BP Abbott et al), Class.Quant.Grav. 35 (2018) 6, 065010.

https://iopscience.iop.org/article/10.1088/1361-6382/aaaafa
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Why do we want to de-noise?

Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run, LIGO 
Scientific and Virgo Collaborations (BP Abbott et al), Class.Quant.Grav. 35 (2018) 6, 065010.

Background reduction

https://iopscience.iop.org/article/10.1088/1361-6382/aaaafa
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Why do we want to de-noise?
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A zoo of short-time “glitches”

Detector noise

Enhancing Gravitational-Wave Science with Machine Learning, Elena Cuoco et al. Mach.Learn.Sci.Tech. 2 (2021) 1, 011002

https://doi.org/10.1088/2632-2153/abb93a


15

Is resistance futile?

Detector noise

The interferometer noise
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The battle for denoising: The 
strain-based approach

- =

strain data some model clean data

Deterministic vs. machine learning methods
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Strain-based approach - I

Simple gate
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Advantages/disadvantages

● Easy to apply, very low latency 
● Works for any type of glitch and sources 
● Does not depend on long-time scale 

effects
● Does not need training or special 

algorithms
● Loss of data (SNR)
● Affects sky localization, source 

parameter estimation...
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Advantages/disadvantages

NNETFIX: An artificial neural network-based denoising engine for gravitational-wave signals, K. Mogushi et al, e-Print: 2101.04712 [gr-qc]

Binary black hole coalescence with network SNR = 42.4 and masses = (35, 29) M
☉

130 ms-long gate at 30 ms before merger

https://arxiv.org/abs/2101.04712
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● Model (specific)
transient and
subtract

Strain-based approach - II

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, LIGO Scientific and Virgo Collaborations, B.P. Abbott 
(LIGO Lab., Caltech) et al., Phys.Rev.Lett. 119 (2017) 16, 161101

https://doi.org/10.1103/PhysRevLett.119.161101
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Advantages/disadvantages

● Deterministic
● Does not depend on long-time scale 

effects
● Requires glitch model
● Little control on accuracy of 

subtraction
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QuickCBC

Wavelet-based
de-noising + 
Bayesian
inference

Rapid and Robust Parameter Inference for Binary Mergers, Neil J. Cornish, e-Print: 2101.01188 [gr-qc]

https://arxiv.org/abs/2101.01188
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Advantages/disadvantages

● Deterministic
● Does not depend on long-time scale 

effects
● Requires separating coherent vs. 

incoherent part of signal
● Does not work for single-interferometer 

events
● Requires source and/or glitch model
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Strain-based approach - III

● Combination of deterministic and supervised / 
unsupervised machine-learning methods

● Model classes of noise transients, then subtract

Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data, Jade Powell et al., 
Class.Quant.Grav. 34 (2017) 3, 034002

https://doi.org/10.1088/1361-6382/34/3/034002
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Advantages/disadvantages

● Can outperform the performance 
of deterministic methods

● Re-training may takes care of 
long-time scale non-stationarity

● Supervised methods works only 
for known types of noise 

● Unsupervised methods may not be 
accurate depending on type and 
severity of glitch
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Strain-based approach - IV

● Excise and reconstruct
● Single-interferometer
● Machine learning-based
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NNETFIX

full strain
(noise + signal) gated strain reconstructed strain

(noise + signal)

Build the map 

  by training an ANN on full / gated strain such that 
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NNETFIX

● One hidden layer containing 200 neurons
● Rectified linear unit activation function
● ADAM stochastic gradient-based optimizer with learning rate of 10-3

● 60%+10%+30% for training, internal validation and testing
● Non-spinning IMRphenomD BBH merger waveforms 
● 3 distinct template banks (low, medium, high BBH component masses) each 

with 12 sets of waveforms injected into 50 distinct realizations of advanced 
LIGO recolored Gaussian noise at design sensitivity + (pure) noise time series

● 12 combinations of gate durations (50, 75, 130) ms and gate end-times before 
merger (15, 30, 90, 170) ms

● Further testing on 108 additional independent exploration sets with network 
SNR (11.3, 28.3, 42.4) and component masses (12, 10), (20, 15), (35, 29) M☉
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NNETFIX
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NNETFIX – SNR recovery
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NNETFIX – SNR recovery

Signal/waveform match

Fractional match gain

SNR = 11.3 (gray-filled) vs SNR = 42.4 (red) 
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NNETFIX – SNR recovery

Signal/waveform match

Fractional match gain

Exploration set with component masses (20,15) M
☉

Gate end-times: Green circles =15 ms, blue crosses = 30 ms, 
black squares = 90 ms, red stars = 170 ms 
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NNETFIX – Sky map recovery

Skymap overlap

Overlap log ratio

Exploration set: 
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NNETFIX – Sky map recovery

Skymap overlap

Overlap log ratio

Exploration set with component masses (35,29) M
☉
 

gate duration = 130 ms

gate end-time [ms]

SNR = 11.3
SNR = 28.3
SNR = 42.4
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NNETFIX – Sky map recovery

Skymap overlap

Overlap log ratio

BBH with network SNR = 42.4 and masses = (35, 29) M
☉ 

with 130 ms gate at 30 ms before merger
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Advantages/disadvantages

● Works for any type of glitch
● Works also for single interferometer
● Recovers SNR and sky localization
● Re-training takes care of long-time scale 

non-stationarity
● Requires source modeling
● May not be accurate for long-duration 

glitches or glitches very close to merger
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We may need to go beyond strain-
based methods

Auxiliary channel-based methods

Identify
in aux

Model
in aux
subtract
in strain
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Auxiliary channel-based approach

● Model classes of glitches in auxiliary 
channels

● Map to strain, then subtract
● Can be deterministic and/or machine 

learning-based

s(t) = n
s
(t) + g

s
(t) + h(t)

a(t) = n
a
(t) + g

a
(t)

g
s
(t) = g
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a
(t))-1] s

c
(t) = n

s
(t) + h(t)

strain + aux data map aux to strain subtract in strain
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Advantages/disadvantages

● Does not use information from strain
● Large amount of information available from 

auxiliary channels
● Re-training takes care of long-time scale non-

stationarity
● Does not require source modeling
● It should work for any type of glitch and 

sources
● Similar scheme used to remove non-stationary 

power line at 60 Hz and 4 Hz-wide sidebands
(Machine-learning non-stationary noise out of gravitational-wave detectors, G. Vajente et al, Phys. Rev. D 101, 042003 (2020))

● What if there are no witness channels?

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.042003
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Thank you!

The author thankfully acknowledges the human and material resources of the LIGO Scientific Collaboration and the Virgo Collaboration that have 
made possible the results presented in this talk, and the National Science Foundation for its continuous support of LIGO science and basic and 

applied research in the United States.
This work has been partially supported by NSF grants PHY-1921006 and PHY-2011334.

The battle
continues...
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