ET-LF Mirror Temperature

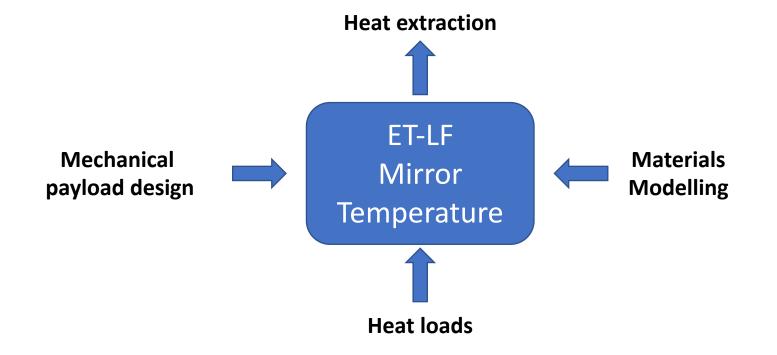
Workshop Conclusions

Outline

- Summaries from breakout rooms
 - Heat extraction path
 - Thermal noise modelling
 - Vacuum design

Heat extraction path

Heat extraction path design - summary of breakout room discussion


We need to agree with suspension people about a viable scheme for ET-LF payload.
We think that a series of dedicated meeting of all involved working groups should be scheduled.
> See final slides

Payload features desirable from the Heat Extraction WP are:

- We need a heavy mass as close as possible to the mirror to sink the vibrations of thermal path links.
- We need a **thermal shield around the mirror** (suspended to marionette or not).
- We must *preserve as much as possible the low dissipations of the marionette pendulum* (for instance, using the suspension cable as a heat link)

ET-LF mirror temperature

• Aspects influencing the ET-LF mirror temperature

Action 1: Heat load

Heat load contributions

- Coating absorption
- Substrate absorption
- Thermal radiation (from pipe arms)
- Surface regeneration (removal of adsorption layers)
- Actuators

Documentation in ET Wiki

- Collect values in **heat load table** and update in regular intervals
- References to code, documents etc.
- Consideration of steady-state and transients

Action 2: Cryostat mechanical design parameter space

	Item	Cathegory	Value	Comment		
1	Mirror					
1.1	Diameter	A	xy mm	Determined by beam size		
1.2	Mass	A	xy kg	Determined by thermal noise		
1.3	Bulk material	В	Silicon or sapphire	Silicon baseline		
1.4	Coating(s)	В			ine mechan	ical cryostat design
2	Last stage suspension				determins t	the heat extraction
2.1	No. of fibers	A	4			
2.2	Diameter	A	>= x mm	Mechanical strength	path, the ne	oise modelling and
2.3	Length	A				
2.4	Material	В			the va	cuum design!
3	Platform 1					
3.1						
	Next steps:		_			
	 Structure the design space in Assign space/volumes for the 					
Ν	Cryostat vessel					
N.1	Diameter	Α	< 4 m	Maximum lorry height 4.0 m, maximum	width 2.55 m	
N.2	Height	A	xy m			

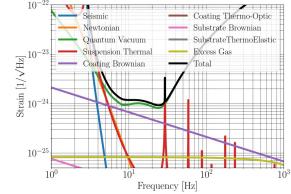
Action 2: Cryostat mechanical design parameter space

• Example specification item:

No.	Item	Value / Range
1.1	Mirror diameter	≥ x mm ≤ y mm x to y mm
	Additional information - Reference to documents - History 	

The mechanical cryostat design determins the heat extraction path, the noise modelling and the vacuum design!

- Store and update the cryostat design parameter table in the ET Wiki
- First meeting t.b. organised shortly


Messages regarding mirror temperature

- In the short term, a mirror temperature of \leq 20 K is feasible
- In the medium long term, temperatures of 10 K and lower can be achieved

Thermal noise modelling

Goals

- derived a realistic noise budget to make sensible decision on the mirror temperature. We need:
 - 1) suspension thermal noise model
 - 2) mirror thermal noise model(s)

3) temperature dependency of the material parameters

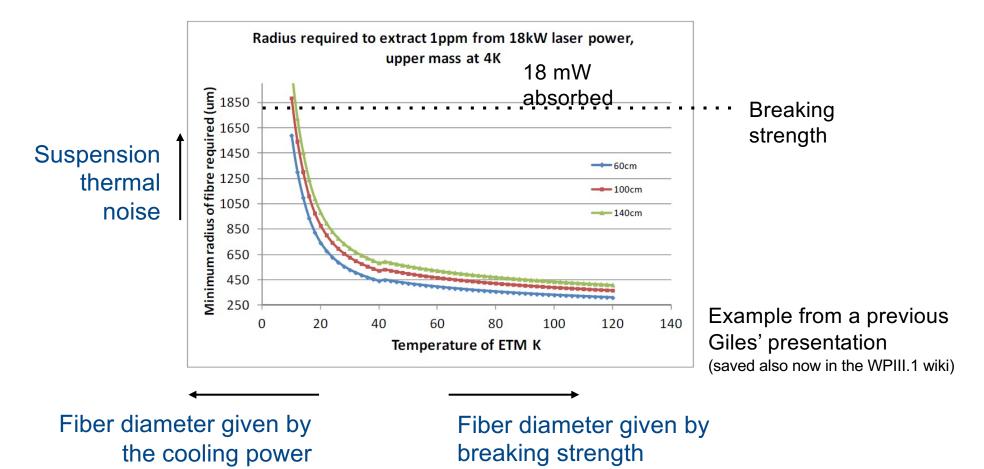
1 and 3 are currently missing, actions for the best way to move forward.

2 is present, will include multi-material coating, presence of ice

Subgroup notes in a shared document: https://etherpad.in2p3.fr/p/ET_Cryo_noise_budget

Suspension thermal noise model (summary)

- Actions:
 - → adaptation of the GWINC suspension model for AdV (in Matlab) as a start
 - → thermal model to dimension the fibers
 - → connection with ET-pathfinder and CE


Dedicated WP (III.1), critical work now, please join to contribute!

For the long term: FEM and analytical models of the suspension with realistic estimates of the mechanical losses and thermal conduction at joints.

Experimental data will be crucial

Suspension simple thermal model

to have quick results based on a simple model
 → assume 0.05-0.2 W of heat absorbed, monolithic suspension
 → calculate the fiber diameters to reach a target temperature

Temperature dependency of materials

Demonstern	Т	Fused silica		Sapphire		Silicon	
Parameter		Value	Ref.	Value	Ref.	Value	Ref.
	$10\mathrm{K}$	6.3	[374]	0.085	[508]	0.276	[509]
heat capacity	$20\mathrm{K}$	25.2	[374]	0.72	[508]	3.41	[509]
$({ m J/kgK})$	$30\mathrm{K}$	54.6	[374]	2.6	[508]	18.55	[509]
	$300\mathrm{K}$	738	[374]	781	[508]	713	[509]
	$10\mathrm{K}$	0.098	[361]	2900	[361]	2110	[360]
thermal conductivity	$20\mathrm{K}$	0.13	[361]	15700	[361]	4940	[360]
(W/mK)	$30\mathrm{K}$	0.18	[361]	20700	[361]	4810	[360]
	$300\mathrm{K}$	1.5	[361]	46	[361]	148	[360]
thampal armanaian	10 V	9.9×10^{-7}	[976]	1.0×10^{-9}	[500]	00, 10-10	[500]

From first ET-TDR

- Actions:
 - → materials database hosted in the Vac-Cryo wiki
 → joint effort with CE to not duplicate work
 → for optical parameters, wavelength dependency
 → highlight missing parameters → R&D plan

Beyond the workshop

• Keep the effort going :

→ contact the WP III.1 leaders

WP III.1 Observatory Design and Noise Budget

→ joint the dedicated meetings within the noise budget WP
→ mailing list link here Stefan Danilishin

Teng Zhang

• Will contact the names in our shared document to contribute to the material database

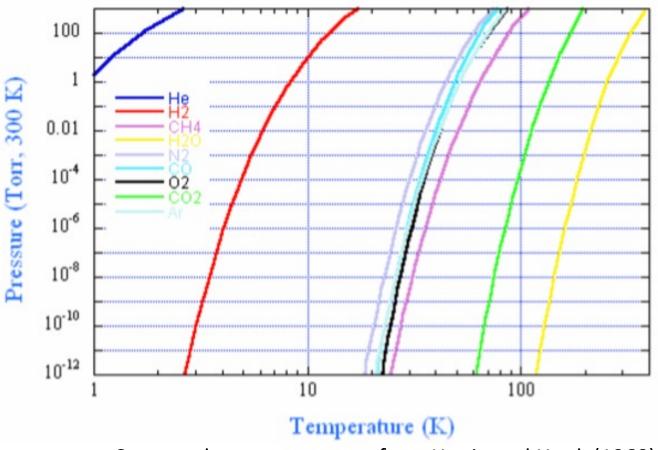
Vacuum design

(Vacuum Consequences of) mirror Temperature:

• Mirror Temperature will define tower operating pressure since at cryogenically temperature gas will cryosorb on the mirror surface inducing:

o detrimental effects on the optical properties (few 100s of nm ice)*.
o K. Hasegawa, et al, Phys. Rev. D 99, 022003 (2019),
o Add heat load to the mirror (~100mW every few nm!!)*
S. Tanioka, K. Hasegawa, and Y. Aso, Phys. Rev. D 102, 022009 (2020),
o Add thermal noise (tens of laser wavelenght → >~ 300 nm)*
Jessica Steinlechner and Iain W. Martin PRR 1, 013008 (2019)
o Add low angle scattering laser light (unclear in size and effect)
o

* To be crosschecked by ISB


Cryogenic vacuum

- At low Temperature and at the expected pressures of p< 1x 10⁻¹⁰ mbar a number of gasses (N₂ H₂O, etc. will condense on cold mirror
- Assumed Sticking coefficient $S_c = 1$.

Defining:

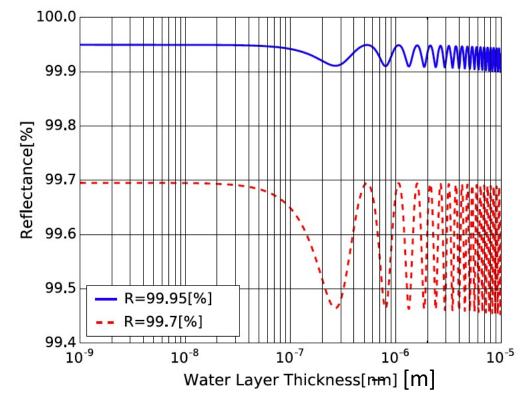
31/03/2021

- 1 L (Langumir) = 1×10^{-6} mbar x 1s
- For $S_c = 1$; 1 L ~ 1Monolayer criosorbed~ (H₂O ~ 0.3 nm)
- → In 1x 10⁻¹⁰ mbar it takes 10.000 s (~3h) to build up a ML.

Saturated vapour pressure from Honig and Hook (1960)

For H_2O any T < 125 K will have the same challenges

Roberto Cimino


Frost on Mirror Optical properties:

PHYSICAL REVIEW D 99, 022003 (2019)

Molecular adsorbed layer formation on cooled mirrors and its impacts on cryogenic gravitational wave telescopes

Kunihiko Hasegawa,^{1,*} Tomotada Akutsu,² Nobuhiro Kimura,^{3,4} Yoshio Saito,¹ Toshikazu Suzuki,^{1,3} Takayuki Tomaru,^{3,4} Ayako Ueda,³ and Shinji Miyoki^{1,†}

Reflectance changes induced by molecular adlayer growth

 From the literature: studies at KAGRA show that already after 100 nm of H₂O ice Reflectivity gets affected .

100 nm $H_2O \rightarrow \sim 30 L \rightarrow \ln P_{H2O} \sim 1x \ 10^{-10}$ mbar it takes 10.000x 30 s (~90 h) to start observing detrimental effects!!!

If P_{H2O} ~ 1x 10⁻¹² mbar --> ~ 1 year Great design challenge!

Cimino

Frost on Mirror Adsorption properties:

Optical loss study of molecular layer for a cryogenic gravitational-wave detector

Satoshi Tanioka, Kunihiko Hasegawa, and Yoichi Aso Phys. Rev. D **102**, 022009 – Published 27 July 2020

> R. A. Matthew *et al.*, Einstein gravitational wave Telescope (ET) conceptual design study, ET-0106C-10, https://tds.ego-gw.it/ql/?c=7954 (2010).

ET Available thermal budget ~ 100 mW

1 nm H₂O \rightarrow ~ 3 L \rightarrow In P_{H2O} ~ 1x 10⁻¹⁰ mbar it takes 10.000x z s (~9 h) to start observing detrimental effects!!! \rightarrow A drift of mirror T due to augmented heat adsorption! And???

If $P_{H2O} \sim 1 \times 10^{-12} \text{mbar} \rightarrow \sim 1 \text{ month}$

JFN 31/03/2021

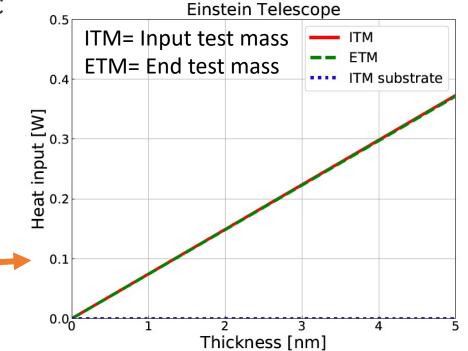
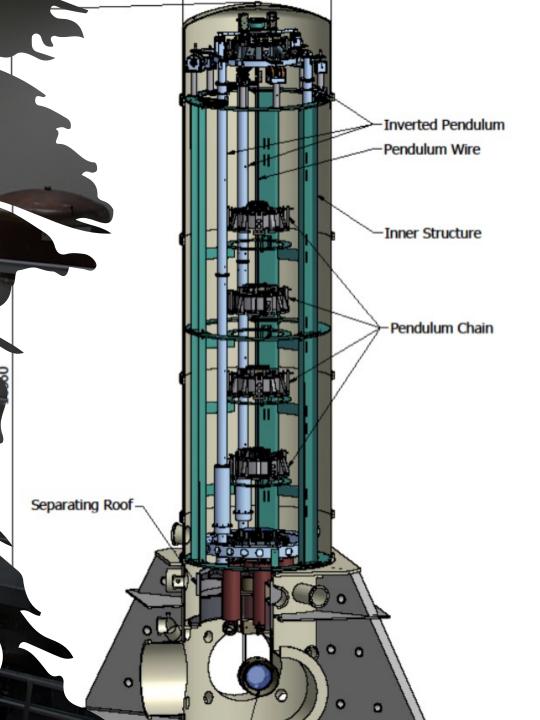


FIG. 6. Heat input to each test mass mirror in ET induced by the optical absorption of CML. As a result of strong absorption of amorphous ice, the heat load to test mass exceeds 100 mW even when the CML thickness is only a few nm. It should be noted that the radiation from the beam ducts is not taken into account for the case of ET.

All that must be cross checked but:

FROST is an issue!

Need of mitigation strategies:


- Passive methods
- Active methods

Passive mitigation methods:

- Very low base pressure in:
 - Very big volumes
 - Very complex structures
- Optimization of transients (cooling down etc)
- \rightarrow VERY HIGH COSTS AND R&D REQUIRED to reach:
- P_{H2O} ; P_{CO} ; $P_{CH4} < 1x 10^{-12}$ mbar Severe limitations in design and material choice in the tower!!! $P_{H2} < 1x 10^{-10}$ mbar Importance of P transient (integral gas load !)

Passive methods will certainly be implemented

For the sake of the project, active methods needs to be there

Active methods:

Thermal methods:

Bringing the mirror or its surface above **125 K**.

- \rightarrow non thermal methods
- Exiting the overlayer molecules to induce their (non-thermal) desorption!

Mitigation methods

CO ₂Laser

Inductive?

UV Photons

Electrons

....

thermal

Non

thermal

31/03/2021

Warm up above 125K.

How long and how often???.

Possibly implying unacceptable GWD downtime!

Great impact on design: Temperature cycles AND improve P_{H2O} < 1 x 1x 10⁻¹³ mbar

CO₂ Laser beam penetrated some microns within the mirror surface:

Can induce damage to optics?

Can give H_2O ice sufficient thermal energy to be removed (>125 K) without heating the mirror?

UV light induce electronic transitions in H₂0 and its desorption

 H_2O yield ~1 × 10⁻³ molecules/photon

UV photons induce defect formation deteriorating optical properties

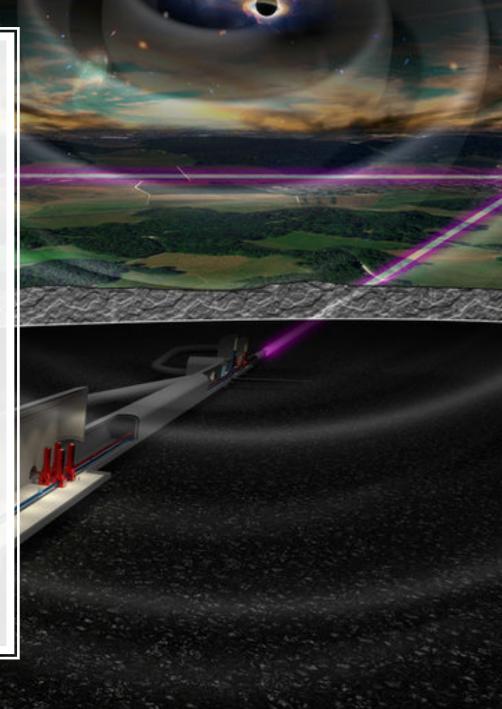
Low (20-200 eV) Electrons induce transitions in H₂0 and its desorption

 H_2O yield ~1 × 10⁻¹ molecules/electron

Low en. electrons penetrate only nm below the mirror surface

Charge issues- can be cured by electron irradiation too

Roberto Cimino


Some (random) questions from the break-out section:

- From Stuart Reid:
- What are of the optics (face/entire surface?) do we need to keep ice off? Do we need to keep ice off whole face?
- Do we keep a steady-state buffer layer of ice on the surface? This may prevent damage to the mirror/coatings from the ice-removal method *e.g.* CO₂ laser, electron/ion bombardment, other e/m radiation? At what thickness is optical absorption a problem?
- How stable does the mirror temperature have to be? Does ice on the mirror surface cause unpredictable thermal loading? Can this cause temperature drift or temperature gradients are a problem?
- Can we estimate the possible thermal gradients due to known absorption of e.g. the mirror coatings, and ice.
- How do we measure the mirror temperature? Can this be done from internal modes? Other optical properties that can be tracked?
- Does ice cause scatter? Does this couple to low freq noise?
- Scatter is this low-angle too? Do we need to worry about this? How do we assess to potential of low angle scatter from ice build-up?
- Do we need to worry about carbon build up on mirror surfaces too?
- Generally how does ice change reflectivity, absorption, scatter, TN...?

Generally – we need to hear more from KAGRA on their experiences.

Conclusion

- ≻Mirror 10< T < 125K shows same issues
- ➢ISB WP's should consider frost formation as unavoidable at LT. (it is only a question of time!)
- Estimates of tolerated thickness must be provided to conceive the tower vacuum system to be compliant with one (?) year long runs few months (?) down-time.
- Effective Mitigation methods needs to be studied or "fast" temperature cycling must be foreseen to avoid unacceptable long down times.
- Need to find the best compromise among many requirements

