The Physics

Einstein's Theory of Gravity 1915

Mass and Energy deform space-time around them and inversely they follow the deformed paths inside it

Waves can be produced by violent phenomena

Spacetime Mass-Energy

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

How can we detect them?

Could the waves be a coordinate effect only, with no physical reality? Einstein didn't live long enough to learn the answer.

In January 1957, the U.S. Air Force sponsored the *Conference on the Role of Gravitation in Physics*, a.k.a. the Chapel Hill Conference, a.k.a. GR1.

The "gravitational wave problem" was solved there, and the quest to detect gravitational waves was born. (Pirani, Feynman and Babson)

Sticky bead argument (Feynman)

There is no Gravitational Wave Herz

1000 kg

f = 1000 Hz

r = 300 m

 $h \sim 10^{-35}$

1000 kg

Courtesy B. Barish

Only extremely violent phenomena can produce detectable GW

 Consider ~30 solar mass binary Merging Black Holes

$$-$$
 M = 30 M _{\odot}

$$-$$
 R = 100 km

$$-$$
 f = 100 Hz

$$-$$
 r = 3 10²⁴ m (500 Mpc)

$$h = \Delta L / L \approx \frac{4\pi^2 GMR^2 f_{orb}^2}{c^4 r} \Rightarrow h \sim 10^{-21}$$

 $h = 10^{-21}$ corresponds to a change ΔL by 1/1000 of a proton radius in a distance L of 1 km

The Astrophysical Gravitational-Wave Source Catalog

Coalescing Binary Systems CBC

- ✓ Black hole black hole
- ✓ Neutron star neutron star
- BH-NS
- •Analytical waveform

Continuous Sources

- Spinning neutron stars
- monotone waveform

Transient 'Burst' Sources

- core collapse supernovae
- cosmic strings
- unmodeled waveform

Cosmic GW Background

- residue of the Big Bang,
- stochastic, incoherent background

Transient Burst and Continuous sources the next goal

Amplitude
Distance
Inclination angle

CBC signals I

The signal at the lowest order:

Spiraling phase

$$m{h}_{+}^{TT}(t) = rac{4(GM)^{5/3}}{RC} rac{1 + \cos^{2}i}{2} (\pi f(t))^{2/3} \cos\phi(t)$$
 $m{h}_{\times}^{TT}(t) = rac{4(GM)^{5/3}}{RC} \cos i (\pi f(t))^{2/3} \sin\phi(t)$

i: angle of the event w.r.t the interferometre axis

where

Chirp mass:

$$M = \mu^{3/5} M_{tot}^{2/5}$$

• frequency:

$$f(t) = \frac{1}{\pi} \left(\frac{256}{5} \frac{(GM)^{5/3}}{c^5} (t_c - t) \right)^{-3/8}$$

• Phase:

$$\phi(t) = -2\left(\frac{G^{5/3}}{c^5}\right)^{-3/8} \left(\frac{t_c - t}{5M}\right)^{5/8} + cste$$

$$h(t) \propto (t_c - t)^{-1/4}$$
 A "chirp"

 t_c : time of coalescence

CBC signals II

The signal at the lowest order:

Spiraling phase

$$h_{+}^{TT}(t) = \frac{4(GM)^{5/3}}{Rt^{4}} \frac{1 + \cos^{2}i}{2} (\pi f(t))^{2/3} \cos \phi(t)$$

$$h_{\times}^{TT}(t) = \frac{4(GM)^{5/3}}{Rt^{4}} \cos i (\pi f(t))^{2/3} \sin \phi(t)$$

Absolute distance CBC => Standard sirens

Phase includes

- GR dynamics
- Matter effects (NS EOS)
- Fundamental physics (GR extensions, graviton mass...)

Measure of phase => tests of GR, constraints on NS EOS etc...

The first GW event: 14 September 2015

2017 October 3

observation of gravitational

waves".

Rainer Weiss

Barry C. Barish

Kip S. Thorne

Power $\sim 4 \times 10^{49} \, \text{W}$

The first GW 'triangulated event: 14 August 2017

The first multimessenger event 17 August 2017

A binary neutron star merger at 40 Mpc

Discovery of Optical Counterpart (AT2017fgo) and Host Galaxy (NGC 4993)

GW170817-GRB170817A-AT2017fgo Observed by about 70 observatories around the world

Time: -1225 days

GW170817

« Gravitational waves and Gamma-rays from binary neutron star merger: GW170817 and GRB170817A », Abbott et al., ApJ, 2017

Report from Integral/SPI-ACS
Detected GRB170817A

Kilonova

Predictions Vs observations

Spectrum: blue->red as time

Favors ejecta $v \sim 0.3 c$.

Eject mass $^{\sim}$ 0.03 M $_{\odot}$ (LIGO-Virgo estimate $^{\sim}10^{-3}$ - 10^{-2} M $_{\odot}$ from GW observations only)

Initially poor in lanthanids

NS LABORATORY FOR STUDYING SUPER-DENSE MATTER

GRAVITATIONAL-WAVE COSMOLOGY

$$v_H = H_0 d\,$$
 Combining the distance

measured from GWs $\,d=43.8^{+2.9}_{-6.9}\,{
m Mpc}$

and NGC4993 recession velocity

$$\rightarrow H_0 = 70.0^{+12.0}_{-8.0} \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$$

Abbott et al. 2017, Nature, 551, 85A

Hubble constant measurement

Planck data 67.74 ± 0.46 km/s/Mpc Supernovae 73.24 ± 1.74 km/s/Mpc ➤ 3s « discrepancy ». More GW events may allow to see clearer!

A few tens of evens => < 1% accuracy

GW170817 parameters

	Low-spin priors ($ \chi \le 0.05$)	High-spin priors ($ \chi \le 0.89$)
Primary mass m_1	$1.36-1.60M_{\odot}$	$1.36-2.26M_{\odot}$
Secondary mass m_2	$1.17-1.36M_{\odot}$	$0.86-1.36M_{\odot}$
Chirp mass ${\mathcal M}$	$1.188^{+0.004}_{-0.002}M_{\odot}$	$1.188^{+0.004}_{-0.002}M_{\odot}$
Mass ratio m_2/m_1	0.7 - 1.0	0.4 - 1.0
Total mass $m_{ m tot}$	$2.74^{+0.04}_{-0.01}{ m M}_{\odot}$	$2.82^{+0.47}_{-0.09}{ m M}_{\odot}$
Radiated energy E_{rad}	$>0.025\mathrm{M}_{\odot}\mathrm{c}^2$	$>0.025\mathrm{M}_{\odot}\mathrm{c}^2$
Luminosity distance $D_{ m L}$	$40^{+8}_{-14}{ m Mpc}$	$40^{+8}_{-14}{ m Mpc}$
Misalignment of total angular momentum and line of sight	$\leq 56^{\circ}$	$\leq 55^{\circ}$
using counterpart location	≤ 30°	≤ 30°
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤ 800	≤ 700
Dimensionless tidal deformability $\Lambda(1.4 M_{\odot})$	≤ 800	≤ 1400

Questions about the product of the merger

GRAVITATIONAL-WAVE TRANSIENT CATALOG-1 ■LIGO MOMVIRGD ※ Georgia
Tech Today:10 BBH mergers 1 BNS merger 512 128 GW151012 GW170104 GW150914 512 128 GW170729 GW170814 GW170809 512 REQUENCY 128 GW170818 GW170823 GW170817: BINARY NEUTRON STAR TIME (SECONDS) TIME [SECONDS] TIME [SECONDS]

Merger rates of BNS: 920 [110, 3840] BBH: 53 [9.7, 101] Gpc-3 y-1

Multiple impact: Cosmology, Astrophysics, Nuclear Physics, Particle Physics, General Relativity

Hubble constant measurement
Test of the GRB kilonova model
Neutron star EOS constraints
Production of heavy elements
Speed of GW w.r.t v_{em}
Test of equivalence principle
Test of Lorenz Invariance
Multiple tests of Modified Gravity

$$-3 \ 10^{-15} \le \frac{v_{GW} - v_{EM}}{v_{EM}} \le +7 \ 10^{-16}$$

GW Science

state

Dark Matter Black Holes? Axions?

Other stars

Dark matter 25%
Atomic matter
Atomic matter
69%

Formation of Heavy Elements

Alernative Theories of

Gravity

Alternative Theories of

Quantum Mechanics

The Interferometer

30 years of EGO/Virgo History

1989 Virgo proposal

1993-1994 CNRS and INFN approve VIRGO (+5y)

1997 Construction starts near Pisa (+7y)

2000 Foundation of EGO (CNRS, INFN) (+11y)

2003 Inauguration of Virgo (+14y)

2004-2006 Commissioning of Virgo

2006 Netherlands joins EGO as an Observer

2007 Start of Virgo science runs (+18y)

2007 LIGO-Virgo "a single machine"

2009 EGO Council approves AdVirgo (+20y)

2010 Polish, Hungarian and Spanish groups join AdVirgo

2017 First detection (+8y, +28y)

2019 03 one year RUN (+10y,+30y)

Total cost (US costing, including HR) near 0.5 BE

Alain Brillet

Adalberto Giazotto

Inauguration Virgo 2003

Advanced Virgo

Virgo is a European collaboration with about 400 members

Advanced Virgo (AdV): upgrade of the Virgo interferometric detector. Participation by scientists from France, Italy, Belgium, The Netherlands, Poland, Hungary, Spain, Germany

25 laboratories, 340 authors @ Feb2019

- APC Paris
- ARTEMIS Nice
- EGO Cascina
- IFAE
- INFN Firenze-Urbino
- INFN Genova
- INFN Napoli

- INFN Perugia
- INFN Pisa
- INFN Roma La Sapienza
- INFN Roma Tor Vergata
- INFN Trento-Padova
- LAL Orsay ESPCI Paris
- LAPP Annecy

- LKB Paris
- LMA Lvon
- Nikhef Amsterdam
- POLGRAW(Poland)
- RADBOUD Uni. Nijmegen
- RMKI Budapest
- UCLouvain

- ULiège
- Univ. of Barcelona
- Univ. of Valencia
- University of Jena

European Gravitational Observatory (EGO)

EGO is a consortium with members CNRS and INFN and NIKHEF as observer with goal the promotion of research in the field of gravitation in Europe.

Objectives:

- I. Construction, maintenance operation and upgrade of the Virgo interferometer
- II. Maintenance, operation and upgrade of the site infrastructures including a computing center
- III. Representation of the consortium at the regional, national, European and global level
- IV. Promotion of interdisciplinary studies
- V. Promotion of R&D (mostly environmental noise and photonic science)
- VI. Outreach and education

The Advanced Virgo antenna

The art and science of GW observation

Sources at different frequencies a complex task at different technology fronts

EGO/Virgo and Technology

A technological hub

A huge effort over more than 3 decades of technological developments in a) State-of-the-art precision optics; b) Low optical and mechanical dissipation materials and new optical coatings for mirrors c) Low loss electro-optics d)The world's most stable high power lasers, d) High performance seismic vibration filtering e) Advanced environmental noise studies; f) Low noise control systems g) vacuum handling

AdVirgo Data Flow: The GW170814 case

- 1. The signal arrives
- 2. Data composed into frames
- 3. Calibration of the data
- 4. Veto, DQ flags production
- 5. h(t) transfer
- 6. Low-latency matched-filter pipelines
- 7. Upload to GraceDB
- 8. Data written into on-line storage
- 9. Low-latency data quality
- 10. Low-latency sky localization
- 11. GCN Circular sent out
- 12. Data written into Cascina Mass Storage
- 13. Data transfer toward aLIGO and CCs

Where we are today Preparing for the O3 run (end of March 2019) towards the BNS 60 Mpc sensitivity (200 Mly)

GW synergies

Virgo well isolated from environment

Increase of sensitivity → **challenges** → **synergies with Geo/Atmospheric** Science

Cosmic rays

Interactions cosmic ray shower ↔ mirror test masses:

- Elastic interaction: direct momentum transfer
- Inelastic interaction: heating → distortion of mirror surface
- Muons are charged → charge deposit on mirror → Coulomb force fluctuations

Braginsky et al. *Notes about noise in GW antennas created by cosmic rays*, 2006 Phys. Lett. A 350,1 arXiv:gr-qc/0509058

- □ Some effect can be observed for > 2TeV showersh ≈ 10^-22 (just a few / year)
 - ☐ Certainly of relevance for future 3G detectors Acquiring experience now helps!
- ☐ One muon detector installed at EGO, during O3 science run (courtesy of Jacques Marteau IPN Lyon)

Synergy with Archaeology ->

3 months of CR data

Space

Time

EGO/Virgo and Society

Art and science

Tomas Saraceno, funambule entre l'art et la science

ORTRAIT - Le Palais de Tokyo offre au plasticien argentin une carte blanche.
In rec'hor ho nornatuello i li v fait vilver cos trillos maeistrales et ses univers multini.

e physicies lianus Eduareus, denieur de l'Observatoire rann	diger des sian de l'act contresposain recore les détaits ne collect sus. Il via
Tomas, risel nervoir alcidal sedle Craftoniamer vian Selectrica Califor Craf	Attivities affect, resolutives a liste fe sile da die. Ou resour les retouinsies entre siles de red
nous anali pas menti. Même après une mult sans sommell, une journée de voyage pais de	Santonal, aux camer de Stalistice miche le Spi Lab, seu centrainen d'analgentes, su collèci
ri une riorgie debondanie. Drun mois qu'il tirni dans une libriole Palais de Tolescolam un	seven Ele instinction d'animales in uniformatique de Engrandes, un accomitaine Poulle bruss vi
report (hespita ii jamire) les telles magis- todes lindes par ses andendes, un trada-	sent temperar communities in develop that of submary citizentees belong the Patric devices
recor on epitantation pophique de la solution des enantes soits mondates.	Even are passed assports de Carrindo. Commercial local cella a commercial? (cli)
em satisparies et d'allère ben bri d'iscommair sance mationi, si manifel dans les internites.	pièce, des index dessifiées par le possible dessis proir si une et fai été francé no
Le monde de la commissance est en crise. Essi	
amper nous acons accomald automorpassis sur	tank discomain journaritain, il expressed in
nation restrictions mention makes requirite pass also be different metticulous menti. Disease nitral pass	 A Diameterie du dessin c'est ajouite l'an gir avec la infrasconique, ante distribution
	(Dalela matthe dans Cintern s, namete t
tout annest nomine and livers, sleen un anglets à la l'angle, auest explir sleen le défeti	teut comprender pour munipules Alors i rappositer de physiciens alles de numbr
Darbitedure amoignisente Daile d'équation que selle qui présendant	puis le Manadouerits institute of Sede legg, il insenie de nauvelles mashines, si
s'elle gater de difficultés né il y a quantier vinu ara en Japani les dans une famille de	office use whitable plate-forme technic exhibitation scientificar à Earmi, 1/24

The second section of the control of

LIGO and Virgo Citizen's Science : Gravity Spy

Coming Soon

IL RITMO DELLO SPAZIO
LE LUCI E I SUONI DELL'UNIVERSO
DA MARCONI ALLE ONDE
GRAVITAZIONALI

THE RHYTHM OF SPACE
Lights and sounds of the
Universe
From Marconi to Gravitational
waves

Ottobre-Novembre 2019 Museo della Grafica – Palazzo Lanfranchi, Pisa

EGO and EUROPE

- EGO an APPEC Functional Center
 - Key role for the APPEC contribution to European Strategy for Particle Physics
 - Promoting multi-messenger Physics in Europe from the institutional point of view
 - Start of a common roadmap Astroparticle-Geoscience for large infrastructures and Technology (first APPEC-GEO-8 meeting 11-12 February 22019 in Paris)

EU programs

- CURRENT
 - G2NET Machine learning in Astroparticle and Geoscience (coordinator)
 - **ESCAPE** Data analysis, EOSC
 - **FRONTIERS** Outreach and education
- SUBMITTED (news ca july)
 - **AHEAD2** for Multimessenger Physics
 - **EU-MMO** for Multimessenger Physics data analysis
 - REINFORCE Swafs Citizen's Science (coordinator)

The Future

An international program A+/AdV+/KAGRA/LIGO India The next 10 years

- \rightarrow > x100 sources
- → A global international network
- → A global Multimessenger network

~1.5 G\$ of total investment

2017

AdV, Cascina, 3 km

GEO, Hannover, 600 m

LIG© ~2025

It will operate as part of the LIGO Network and Collaboration

Virgo Collaboration:

- 343 collaborators
- 6 countries
- 6 computing centres
- ~0.42 G€ of total investment

KAGRA Collaboration:

- 260 collaborators
- 12 countries
- 5 computing centres
 - ~16.4 G¥ of construction costs

KAGRA

BBH and BNS merger rates

Current sensitivity : merger rates of

- BNS: 920 [110, 3840] Gpc-3 y-1
- BBH: 53 [9.7, 101] Gpc-3 y-1
- At the end of ADV+/A+ upgrade
 - \rightarrow x100 sources
- 3G sensitivities
 - \rightarrow x1000 sources over AdV+/A+

96	Chapter 7. 3G Multi-messenger Astronomy

Network	N(detected)	Median loc.	N(<1 sq.deg.)	N(<10 sq.deg.)	N(<100 sq.deg.)
	$[yr^{-1}]$	[sq.deg]	$[yr^{-1}]$	$[yr^{-1}]$	$[yr^{-1}]$
HLV	25	9	0	13	25
HLVKI	51	4	3	44	51
3aLIGO	34	11	1	15	33
1ET+2aLIGO	240	11	5	110	240
1CE+2aLIGO	290	17	4	91	280
3Voy	2500	20	18	550	2300
1ET+2Voy	14000	20	100	2700	13000
1ET+3Voy	19000	12	290	7700	19000
1CE+2Voy	18000	32	110	3000	17000
1CE+3Voy	24000	16	290	7600	24000
1CE+1ET+1Voy	260000	37	1000	28000	240000
1ET+2CE	620000	13	13000	240000	600000
3ET	240000	6	11000	170000	240000
3CE	860000	14	15000	310000	840000

Table 7.1: Detections per year and localization estimates for various 3G configurations. Binary neutron star sources were uniformly distributed in comoving volume. We assume a local co-moving BNS rate of $1000 \, \mathrm{Gpc^{-3} \, yr^{-1}}$.

A new challenge: worldwide collaboration

Between GW but also with em CR and neutrino observatories (GW, CTA, KM3NET/ICECUBE, Auger)

New infrastructures, new detectors, computing, data access...

How will it be supported in the construction phase and funded?

APPEC highest priority

Also a large complemntarity with space present (ISS, AMS,...) and future (ATHENA,...)

The importance of civil infrastructures

- The interlinked sensor network monitoring and mitigating noise of the interferometers is at the avant-garde of the technological front of "smart infrastructures"
- The environmental studies can become a source of innovation in geological and atmospheric matters (early warnings, earth, cloud and sea monitoring).
 Synergies.
- The 3G civil-infrastructure is a large part (>90%) of the cost of 3G, there are technological, innovation synergies to be developed with other fields (HEP, v) with the same concerns of civil infrastructure

Gravitational Waves Ground-Space complementarity

Conclusions

- GW address many fields of fundamental science: from Astrophysics and Cosmology to Particle and Nuclear Physics but also and photonic/optomechanics/QM challenges.
- Multi-messenger science has started and GW is a determining partner
- There is a continuous path of upgrades from adV (2017) to ET (2032-34). GW is a field where there is rare continuity between observation, upgrade and design of a new infrastructure.
 - But, the proper pace has to be kept in the process
- There is a rich and developing field of synergies with Geosciences and Atmospheric sciences
- GW Computing is at the fore-font of recent developments
- There is a great potential of outreach/education/engagement, or societal impact accompanying these developments and it is an enabling element in the above policy