Multi-messenger Astronomy

Multi-Messenger Astrophysics at EGO 10-12 October 2022

M. Branchesi Gran Sasso Science Institute INFN/LNGS and INAF

AHEAD 2020

History of multi-messenger observations

SN1987A

A Star Explodes, Providing New Clues To the Nature of the Universe

BANG

This event enables

- to probe the engine of core-collapse SN
- to set upper bounds on the neutrino mass, charge, and number of flavours
- to perform unique tests of gravity

ature

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

ANATOMY OF A LONO

Gravitational waves from

merging neutron stars put into Radioactively powered transients

The merger of a binary-neutron-star through gravitational waves and multiwavelength observations

> Abbot et al. 2017, PRL, 119 Abbott et al. 2017 ApJL,848

Possible association of high-energy neutrinos with the blazar TXS 0506+056

first direct identification of astrophysical sources of extragalactic neutrinos

Aarsten et al. 2018, Science, 362

of an astrophy:

SOURCE pp. 115, 146, & 14

Chasing t econom

These events demonstrated the potential of multi-messenger observations to provide key insight into the physics of the most energetic events such as SN, GRBs, AGN

SOME OF THE MOST INTERESTING MULTI-MESSENGER SOURCES

COMPACT OBJECT COALESCENCE associated with GRBs and KILONOVA

WD-WD and Type Ia SN

MASSIVE-BH MERGER

FAST RADIO BURST

CORE-COLLAPSE SN

MAGNETARS

TIDAL DISRUPTION EVENT

HE NEUSTRINO AGN, STAR BURST GALAXIES, GRBs

SOURCES OF UHCR

Masses are consistent with the masses of all known neutron stars!

known neutron stars!

TIDAL DEFORMABILITY $\Lambda = (2/3)k_2[(c^2/G)(R/m)]^5$

Credits: Ronchini

 $\Gamma(heta)$

Forward shock from a structured jet

From Ghirlanda et al. 2019

Credits: Ronchini

Pian et al. 2017 Nature Smartt et 2017 Nature

Radioactively powered transients

How was that possible?

What happened after GW17017?

LIGO, Virgo and KAGRA 01+02+03 runs

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

90 GW CANDIDATE EVENTS!

LVK arXiv:2111.03606

GRB 211211A: long GRB/KILONOVA

Minute-duration GRB, prompt and bright spikes last more than 12 s Nearby GRB at 350 Mpc and 7.9 kpc from the galaxy center Rastinejad, J. C. et al. arXiv:2204.10864

GRB 211211A: long GRB/KILONOVA

Rastinejad, J. C. et al. arXiv:2204.10864

See also Xiao, S. et al. and Troja et al. arXiv:2209.03363

GRB 211211A: GeV emission

(>5σ) transient-like emission by Fermi/LAT

Photon energies 0.1-1 GeV

Discovery of a significant

GRB 211211A: GeV excess

The GeV emision is in EXCESS with respect to synchrotron emission from standard forward shock of the relativisic jet explaining the afterglow emission in the other bands

GEV emission from a compact binary merger

External Inverse Compton

kilonova \rightarrow seed photons for the EIC

electrons nearby the kilonova photosphere at $t = 10^4$ s

presence of a long-lived low power jet

GEV emission from a compact binary merger

External Inverse Compton

kilonova \rightarrow seed photons for the EIC

electrons nearby the kilonova photosphere at $t = 10^4$ s

presence of a long-lived low power jet

New counterpart for GW signals

Next observing runs

Observing run timeline and BNS range evolution

Abbott et al. 2020, LRR

O4 volume ~ 3*O3 volume O5 volume ~10*O3 volume

O4 EXPECTATIONS

LIGO, VIRGO, AND KAGRA OBSERVING RUN PLANS

- LIGO, Virgo and KAGRA will start observations on March 2023
- Kagra: 1 Mpc with a plan to improve to 3-25 Mpc during O4
- We do expect a factor 3 in the number of events: we should reasonably expect (O3 79 GW events) to have: ~ 240 GW events. That is almost 1 detection per day, about 5-10 BNS detections
- Sky-localizations similar to O3, median value for BNS a few hundreds of sq. degrees

Credits: De Pietri

Nancy Roman

VOM

ULTRASAT

Unveiling The Dynamic Ultraviolet Sky

HERMES

exploring transients and variability in the dynamic X-ray Universe

Einstein Probe

GECAM

GEN2

CTA and GW DETECTOR synergies

GRB 190114C (MAGIC) GRB 180720B(HESS) Afterglow VHE emission!

Rubin Observatory LSST

It revolutionizes time domain astrophysics!

BROKERS Alerce, AMPEL, ANTARES, BABAMUL Fink, Lasair, Pitt-Google

LSST will detect and send out alerts up to 10.000.000 transients per night

A big data instrument!

Square Kilometer Array!

Next generation GW astronomy and multi-wavelenght follow-up

ET: the European 3G GW observatory concept

Triangular shape Arms: 10 km Underground Cryogenic Increase laser power Xylophone

INCLUDED IN ESFRI ROADMAP in 2021

EXPECTED SENSITIVITY

COMPACT OBJECT BINARY POPULATIONS

BINARY NEUTRON-STAR MERGERS

Sampling astrophysical populations of binary system of compact objects along the cosmic history of the Universe

10⁵ BNS detections per year 10⁵ BBH detections per year

Harms et al. arXiv:2205.02499

BINARY BLACK-HOLE MERGERS

Multi-messenger in the ET era

Radioactively powered transients

Kilonova/GW - EOS constraints Kilonova/GW - Nucleosynsthesis GRBs – BNS/NSBH merger up to high z **Relativistic jet properties Jet-less/jet GRBs GRB/stable NS remnant**

Link to Star Formation History

Emission mechanism

Cosmology

- Large increase of detection rate

 population of BNS/NSBH
 dotactions along the cosmic h
 - $\circ~$ detections along the cosmic history
- Better parameter estimation
- Higher chance to detect other sources and counterparts: core-collapse SN, new-born neutron stars, magnetars, FRBs, neutrinos

ET sky-localization capabilities

ET low frequency sensitivity make it possibile To localize BNS!

- O(100) detections per year with sky-localization (90% c.r.) < 100 sq. deg
- Early warning alerts!

Network sky-localization capabilities

O(1000) detections per year with sky-localization (90% c.r.) < 10 sq. deg

Harms et al. arXiv:2205.02499, Ronchini et al. arXiv:2204.01746

Network sky-localization capabilities

O(1000) detections per year with sky-localization (90% c.r.) < 1 sq. deg

Harms et al. arXiv:2205.02499, Ronchini et al. arXiv:2204.01746

Hundred of MM events per year!

RELATIVISTIC JET PHYSICS, GRB EMISSION MECHANISMS, COSMOLOGY and MODIFIED GRAVITY

Credit: Ronchini

KILONOVA PHYSICS, NUCLEOSYNTHESIS, NUCLEAR PHYISCS and H0 ESTIMATE

Image credit: NASA Goddard Space Flight Center

THERMAL EMISSION - KILONOVAE

KILONOVA PHYSICS, NUCLEOSYNTHESIS, NUCLEAR PHYISCS and COSMOLOGY

PHYISCS and COSMOLOGY

ET+Vera Rubin synergy

ET sky-localization < 40 deg²

VERA RUBIN OBSERVATORY ToO:

- three epochs of 600s observations in two filters
- detection efficiency is larger than 99% up to z=0.3

Around 40 joint ET/VRO per year with less than 10% of VRO telescope time **COSMOLOGY:** Hubble constant measurement from GW standard sirens with percent precision!

HIGH-ENERGY

RELATIVISTIC JET PHYSICS, GRB EMISSION MECHANISMS, COSMOLOGY and MODIFIED GRAVITY

COSMOLOGY and MODIFIED GRAVITY

Prompt and afterglow emission from a structured jet

Model calibration using the properties of observed short GRB samples

- Starting with the BNS population
- Comparison with statistical properties of Fermi GBM sGRBB sample Optimal parameters estimated via MCMC

GRB data from Ghirlanda 2016

$GW + \gamma$ -ray joint detections per year SURVEY MODE

Fermi-GBM+ET

Fermi-GBM+(ET+CE)

Almost all detected short GRB will have a GW counterpart

Depending on the satellites, we will have **tens to hunreds** of detections per year

Ronchini, MB, Oganesyan, et al. 2022 A&A

Cosmic

Explorer

Joint detection GW+X-ray afterglow per year The importance of WFX-ray monitors

Redshift distribution of joint X-ray+GW detections observed in pointing mode

Joint GW+Xray detections with sky-localization < 100 sq. degrees

Prioritization of triggers required

Sky-localization

	ET	ET+CE	ET+2CE
N _{det}	143970	458801	592565
$N_{\rm det}(\Delta\Omega < 1~{\rm deg}^2)$	2	184	5009
$N_{\rm det}(\Delta\Omega < 10~{\rm deg}^2)$	10	6797	154167
$N_{\rm det}(\Delta\Omega < 100~{\rm deg}^2)$	370	192468	493819
$N_{\rm det}(\Delta\Omega < 1000~{\rm deg}^2)$	2791	428484	585317

Viewing angle

Distance

Too large numbers of triggers well localized to be followed-up

Ronchini, MB, Oganesyan, et al. arXiv:2204.01746

Detection of VHE prompt emission from BNS?

USE OF EARLY WARNING ALERTS FROM ET!

Banerjee et al. 2022, in prep.

SKY-LOCALIZATION PRE-MERGERS

BNS Events per year up to z=1.5

Banerjee et al. 2022, in prep.

A REVOLUTION IN OUR KNOWLEDGE OF THE EARLY UNIVERSE, FUNDAMENTAL PHYSICS AND ASTROPHYSICS...

Thanks!

GSSI GW team

B. Banerjee, U. Dupletsa A. Mei, S. Ronchini, G. Oganesyan, B. E. Loffredo, N. Hazra et al.

PRIN 2020 grant 2020KB33TP PRIN 2017 grant 20179ZF5KS