

BERGISCHE UNIVERSITÄT WUPPERTAL

Karl-Heinz Kampert Bergische Universität Wuppertal

The role of UHECR in Multi-Messenger Physics during this decade and the next

proton

APPEC AHEAD 2020

high energy ν and γ arise from UHECR interactions

BERGISCHE UNIVERSITÄT WUPPERTAL

Karl-Heinz Kampert Bergische Universität Wuppertal

The role of UHECR in Multi-Messenger Physics during this decade and the next

Finding and understanding the sources of the most powerful accelerators in the Universe drives the entire field !

proton

APPEC AHEAD 2020

direction, time, energy

direction, time, waveform

GW

÷.,

direction, time, energy

direction, particle type, energy (time)

CR

direction, time, energy

direction, time, waveform

GW

direction, time, energy

direction, particle type, energy (time)

Note, by construction, a CR observatory is in general also a gamma, neutrino, and neutronobservatory

Moreover, MM physics is more than studying transient events (ToOs)

UHECR Observatories

Telescope Array Utah (USA), 700 km²

Karl-Heinz Kampert - University of Wuppertal

Pierre Auger Observatory Argentina, 3000 km²

Auger is a Multi-Hybrid Observatory

Surface Detector (SD) **100% duty cycle**

slide from R. Engel

Fluorescence Detector (FD): 15% duty cycle

Radio Detector (RD): 100% duty cycle

 $E_{\rm cal} = \int_0^\infty \left(\frac{\mathrm{d}E}{\mathrm{d}X}\right)_{\rm obs} \mathrm{d}X$

1 Neutrons and charged CRs: $\Theta \leq 80^{\circ}$

Karl-Heinz Kampert - University of Wuppertal

MMAW Workshop, Pisa Oct. 10-12, 2022

1 Neutrons and charged CRs: $\Theta \leq 80^{\circ}$

Karl-Heinz Kampert - University of Wuppertal

2 Photons: $30^\circ \le \Theta \le 60^\circ$

1 Neutrons and charged CRs: $\Theta \leq 80^{\circ}$

Karl-Heinz Kampert - University of Wuppertal

2 Photons: $30^\circ \le \Theta \le 60^\circ$

3 Down-Going Neutrinos: $60^{\circ} \le \Theta \le 90^{\circ}$

1 Neutrons and charged CRs: $\Theta \leq 80^{\circ}$

Karl-Heinz Kampert - University of Wuppertal

2 Photons: $30^{\circ} \le \Theta \le 60^{\circ}$

3 Down-Going Neutrinos: $60^{\circ} \le \Theta \le 90^{\circ}$

Earth Skimming Neutrinos: $90^{\circ} \le \Theta \le 95^{\circ}$

MMAW Workshop, Pisa Oct. 10-12, 2022

1 Neutrons and charged CRs: $\Theta \leq 80^{\circ}$

Karl-Heinz Kampert - University of Wuppertal

2 Photons: $30^\circ \le \Theta \le 60^\circ$

3 Down-Going Neutrinos: $60^{\circ} \le \Theta \le 90^{\circ}$

Earth Skimming Neutrinos: $90^{\circ} \le \Theta \le 95^{\circ}$

MMAW Workshop, Pisa Oct. 10-12, 2022

UHECR ENGIGY Spectrum

UHECR Energy Spectrum

Pierre Auger Coll., PRD 2020, PRL 2020 (twice editor's choice)

Karl-Heinz Kampert - University of Wuppertal

Physics See Viewpoint: The Anatomy of Ultrahigh-Energy Cosmic Rays

MMAW Workshop, Pisa Oct. 10-12, 2022

UHECR Energy Spectrum

Pierre Auger Coll., PRD 2020, PRL 2020 (twice editor's choice)

Physics See Viewpoint: The Anatomy of Ultrahigh-Energy Cosmic Rays

MMAW Workshop, Pisa Oct. 10-12, 2022

Pierre Auger Coll., PRD 2020, PRL 2020 (twice editor's choice)

Karl-Heinz Kampert - University of Wuppertal

UHECR Luminosity

MIAPP review, Front.Astron.Space Sci. 6 (2019) 23

Note: plot applies both for steady and transient sources, when assuming a characteristic time spread of $\tau = 3 \cdot 10^5$ yr.

UHECR Luminosity

Measurement of local CR energy density

$$\varepsilon_{CR} = 4\pi/c \int_{E_{ankle}}^{\infty} E \cdot Flux(E) dE$$

 $= (5.66 \pm 0.03 \pm 1.40) \cdot 10^{53} \text{ erg Mpc}^{-3}$

→ source luminosity density

 $\mathscr{L} \sim \varepsilon_{CR}/t_{loss} = 2 \cdot 10^{44} \,\mathrm{erg}\,\mathrm{Mpc}^{-3}\,\mathrm{yr}^{-1}$

Typical energy loss time $t_{\rm loss} \sim 1 \,{\rm Gpc/c}$ at $E_{\rm ankle} = 5 \cdot 10^{18} \,{\rm eV}$ Full calculation with SimpProp: $\mathscr{L} \simeq 6 \cdot 10^{44} \operatorname{erg} \mathrm{Mpc}^{-3} \mathrm{yr}^{-1}$

MIAPP review, Front.Astron.Space Sci. 6 (2019) 23

Note: plot applies both for steady and transient sources, when assuming a characteristic time spread of $\tau = 3 \cdot 10^5$ yr.

UHECR Luminosity

Measurement of local CR energy density

$$\varepsilon_{CR} = 4\pi/c \int_{E_{ankle}}^{\infty} E \cdot Flux(E) dE$$

 $= (5.66 \pm 0.03 \pm 1.40) \cdot 10^{53} \text{ erg Mpc}^{-3}$

→ source luminosity density

 $\mathscr{L} \sim \varepsilon_{CR}/t_{loss} = 2 \cdot 10^{44} \,\mathrm{erg}\,\mathrm{Mpc}^{-3}\,\mathrm{yr}^{-1}$

Typical energy loss time $t_{\rm loss} \sim 1 \,{\rm Gpc/c}$ at $E_{\rm ankle} = 5 \cdot 10^{18} \,{\rm eV}$ Full calculation with SimpProp: $\mathscr{L} \simeq 6 \cdot 10^{44} \operatorname{erg} \mathrm{Mpc}^{-3} \mathrm{yr}^{-1}$

MIAPP review, Front.Astron.Space Sci. 6 (2019) 23

Note: plot applies both for steady and transient sources, when assuming a characteristic time spread of $\tau = 3 \cdot 10^5$ yr.

UHECR Luminosity

Measurement of local CR energy density

$$\varepsilon_{CR} = 4\pi/c \int_{E_{ankle}}^{\infty} E \cdot Flux(E) dE$$

 $= (5.66 \pm 0.03 \pm 1.40) \cdot 10^{53} \text{ erg Mpc}^{-3}$

→ source luminosity density

 $\mathscr{L} \sim \varepsilon_{CR}/t_{loss} = 2 \cdot 10^{44} \,\mathrm{erg}\,\mathrm{Mpc}^{-3}\,\mathrm{yr}^{-1}$

Typical energy loss time $t_{\rm loss} \sim 1 \,{\rm Gpc/c}$ at $E_{\rm ankle} = 5 \cdot 10^{18} \,{\rm eV}$ Full calculation with SimpProp: $\mathscr{L} \simeq 6 \cdot 10^{44} \, \mathrm{erg} \, \mathrm{Mpc}^{-3} \mathrm{yr}^{-1}$

UHECR Luminosity and Acceleration Requirements

MIAPP review, Front.Astron.Space Sci. 6 (2019) 23

Note: plot applies both for steady and transient sources, when assuming a characteristic time spread of $\tau = 3 \cdot 10^5$ yr.

UHECR Luminosity and Acceleration Requirements

MIAPP review, Front.Astron.Space Sci. 6 (2019) 23

Note: plot applies both for steady and transient sources, when assuming a characteristic time spread of $\tau = 3 \cdot 10^5$ yr.

Origin of the cut-off

Physics See Viewpoint: The Anatomy of Ultrahigh-Energy Cosmic Rays

$$\dot{\epsilon}_{17} = 2.3e + 45 \quad \frac{\text{erg}}{\text{Mpc}^3 \text{ yr}}$$

proton fraction > 60 EeV: 100.%

= 0 σ

.37/24, VLnA: 474.76/24

CRPropaG12

Itrahigh-Energy Cosmic Rays

Protons and Nuclei with $E > 6 \cdot 10^{19} \,\mathrm{eV}$ suffer rapid energy losses and produce cosmogenic γ 's and ν 's

Itrahigh-Energy Cosmic Rays

Itrahigh-Energy Cosmic Rays

GZK effect ? $p + \gamma_{CMB} \rightarrow \Delta^+ \rightarrow p + \pi^0$ $\gamma\gamma$ $p + \gamma_{CMB} \rightarrow \Delta^+ \rightarrow n + \pi^+$ ν_{μ}, ν_e

Protons and Nuclei with $E > 6 \cdot 10^{19} \,\mathrm{eV}$ suffer rapid energy losses and produce cosmogenic γ 's and ν 's

UHECR Mass Composition

Pierre Auger Coll. PRD 90 (2014) 122006 and ICRC17

Karl-Heinz Kampert - University of Wuppertal

D.Allard Astropart.Phys. 39 (2012) 33

Maximum Rigidity Model describes data well

E. Guido; Auger Collaboration, PoS (ICRC21) 311

VIII V VIII VII ONAVONT BUI YA WANA CHU LEARY PROPADU DA VATAMOGINU TAUGO DA VITAGO DA VATAMOGINU TAUGO DA VITAGO DA VI include the region across the ankle. At this first stage, the effect tions occurring in the acceleration sites are not considered, lin hysical parameters related to the energy spectrum and the ma ng the environments of extragalactic sources. 5723 revious public ne single population **A ext** ragalactic sources was fitted to the da). Here, since we want to interpret also the ankle region we assure a difference of the second of th f different componentse Eachieviragalactic component existinates rces, uniformational stational inductive by opposition good the possible po naller than the distribution of the energy region where no mass composition in the overdensity is considered from the energy spectrum fit. I he overdensity is considered from the energy spectrum fit. meest state while the state of the state of

Combined fit of all-particle energy spectrum and **CR** mass composition:

- assuming uniformly distributed identical sources
- and a rigidity dependent cut-off
- and accounting for propagation effects
- \Rightarrow Cut-Off appears mostly an effect of sources

Maximum Rigidity Model describes data well

E. Guido; Auger Collaboration, PoS (ICRC21) 311

VIII V VIII VII ONAVONT BUI YA WANA CHU LEARY PROPADU DA VATAMOGINU TAUGO DA VITAGO DA VATAMOGINU TAUGO DA VITAGO DA VI include the region across the ankle. At this first stage, the effect tions occurring in the acceleration sites are not considered, lin hysical parameters related to the energy spectrum and the ma ng the environments of extragalactic sources. 5723 revious public ne single population **A ext** ragalactic sources was fitted to the da). Here, since we want to interpret also the ankle region we assure a difference of the second of th f different componentse Eachieviragalactic component existinates rces, unitermatymalstributedinduche bronowingsvollthere exister postion naller than the distribution of the energy region where no mass composition in the overdensity is considered from the energy spectrum fit. I he overdensity is considered from the energy spectrum fit. meest state while the state of the state of

Combined fit of all-particle energy spectrum and **CR** mass composition:

- assuming uniformly distributed identical sources
- and a rigidity dependent cut-off
- and accounting for propagation effects
- \Rightarrow Cut-Off appears mostly an effect of sources

MMAW Workshop, Pisa Oct. 10-12, 2022

Auger/TA Anisotropy Working Group UHECR18 E > 40/52.3 EeV, 20° top-hat 0.21%/2.5% post-trial

Karl-Heinz Kampert - University of Wuppertal

UFERANSOTODES

local significances range from $+4\sigma$ to $-\sigma$ Auger/TA Anisotropy Working Group UHECR

MMAW Workshop, Pisa Oct. 10-12, 2022

Comparing Circ Hodels (Auger only)

Observed sky E > 41 EeV

Comparing Cky Medels (Auger only)

Observed sky E > 41 EeV

Comparing Clay Hockels (Auger only)

Observed sky E > 41 EeV

Karl-Heinz Kampert - University of Wuppertal

Comparing Clay Hodels (Auger only)

Observed sky E > 41 EeV

Karl-Heinz Kampert - University of Wuppertal

Best Fit Models E > 40 EeV

Comparing Clay Hodels (Auger only)

Observed sky E > 41 EeV

Best Fit Models E > 40 EeV

Unexpected Feature: Composition Anisotropy

E. Mayotte (Auger-Collaboration), UHECR 20022

HOSMOLENCE PHOTOMS

Inclined showers & UHE neutrinos

- **Protons & nuclei** initiate showers high in the atmosphere.
 - Shower front at ground:
 - mainly composed of muons
 - electromagnetic component absorbed in atmosphere.
- Neutrinos can initiate "deep" showers close to ground.
 - Shower front at ground: electromagnetic + muonic components

Searching for neutrinos \Rightarrow searching for inclined showers with electromagnetic component

0.5

(AoP)

Karl-Heinz Kampert - University of Wuppertal

EeV Photon Limits challenge protons suffering GZK-losses

Photons can be identified by deep X_{max} and low muon number

E₀ [km⁻² sr⁻¹ yr⁻¹] Ш Integral photon flux for

Similarly, photon upper limits start to constrain cosmogenic photon fluxes of p-sources and SHDM models

Karl-Heinz Kampert - University of Wuppertal

Auger Collaboration, JCAP04 (2017) 009

M. Niechciol (Auger collaboration), UHECR2022

Neutrino Upper Limits for GW170817

Karl-Heinz Kampert - University of Wuppertal

Absence of Neutrino consistent with SGRB viewed at $>20^{\circ}$ angle

May have seen neutrinos if jet were pointing towards us

LIGO, ANTARES, IceCube, Auger, The Astrophys. J. Lett. 850 (2017) L35

MMAW Workshop, Pisa Oct. 10-12, 2022

Isotropic Neutrino Luminosity Bound from BBHs

M. Schimp; Auger Collaboration, PoS (ICRC2021) 968

Alerts & MM-network

- Excellent sensitivity to photons and neutrinos in the EeV range
- The Pierre Auger Observatory actively participates in the joint international effort within the framework of multi-messenger astrophysics
 - Automatic GW follow-up routine in place
 - Sending and receiving alerts to/from Global Coordinate Network (GCN)
 - SD Data stream sent to the AMON and Deeper Wider Faster (DWF)

Pierre Auger: Open Data & Open Source

- 10% cosmic ray data
- 100% atmospheric data
- Close to raw data and higher level reconstruction
- Surface and Fluorescence Detectors
- JSON and summary CSV files
- Python code for data analysis

Visualize

an online look at the released pseudo raw cosmic-ray data

Karl-Heinz Kampert - University of Wuppertal

https://opendata.auger.org doi 10.5281/zenodo.4487613

Offline reconstruction framework is open source

Analyze

example analysis codes in online python notebooks to run on the datasets

a page dedicated to the general public

MMAW Workshop, Pisa Oct. 10-12, 2022

Karl-Heinz Kampert - University of Wuppertal

Snowmass Whitepaper

UHECR whitepaper prepared for U.S. Snowmass survey which is about *particle physics* in the next decade(s)

- almost 100 authors + 200 + endorsers
- 283 pages (with front- and back-matter)
- to be published in Astroparticle Physics
- Input from the community via workshops and via topical conveners
- WP makes general recommendations and outlines a plan for experiments over the next decades
 - caveat: Snowmass targets U.S. funding agencies and particle physics community

see references in WP for material shown here:

https://arxiv.org/pdf/2205.05845

R. Aloisio⁶, J. Alvarez-Muñiz⁷, R. Alves Batista⁸, D. Bergman⁹, M. Bertaina¹⁰, L. Caccianiga¹¹, O. Deligny¹², H. P. Dembinski¹³, P. B. Denton¹⁴, A. di Matteo¹⁵, N. Globus^{16,17}, J. Glombitza¹⁸, G. Golup¹⁹, A. Haungs⁴, J. R. Hörandel²⁰, T. R. Jaffe²¹, J. L. Kelley²², J. F. Krizmanic⁵, L. Lu²², J. N. Matthews⁹, I. Mariş²³, R. Mussa¹⁵, F. Oikonomou²⁴, T. Pierog⁴, E. Santos²⁵, P. Tinyakov²³, Y. Tsunesada²⁶, M. Unger⁴, A. Yushkov²⁵

M. G. Albrow²⁷, L. A. Anchordoqui²⁸, K. Andeen²⁹, E. Arnone^{10,15}, D. Barghini^{10,15}, E. Bechtol²², J. A. Bellido³⁰, M. Casolino^{31,32}, A. Castellina^{15,33}, L. Cazon⁷, R. Conceição³⁴, R. Cremonini³⁵, H. Dujmovic⁴, R. Engel^{4,36}, G. Farrar³⁷, F. Fenu^{10,15}, S. Ferrarese¹⁰, T. Fujii³⁸, D. Gardiol³³, M. Gritsevich^{39,40}, P. Homola⁴¹, T. Huege^{4,42}, K.-H. Kampert⁴³, D. Kang⁴, E. Kido⁴⁴, P. Klimov⁴⁵, K. Kotera^{42,46}, B. Kozelov⁴⁷, A. Leszczyńska^{1,36}, J. Madsen²², L. Marcelli³², M. Marisaldi⁴⁸, O. Martineau-Huynh⁴⁹, S. Mayotte³, K. Mulrey²⁰, K. Murase^{50,51}, M. S. Muzio⁵⁰, S. Ogio²⁶, A. V. Olinto², Y. Onel⁵², T. Paul²⁸, L. Piotrowski³¹, M. Plum⁵³, B. Pont²⁰, M. Reininghaus⁴, B. Riedel²², F. Riehn³⁴, M. Roth⁴, T. Sako⁵⁴, F. Schlüter^{4,55}, D. Shoemaker⁵⁶, J. Sidhu⁵⁷, I. Sidelnik¹⁹, C. Timmermans^{20,58}, O. Tkachenko⁴, D. Veberič⁴, S. Verpoest⁵⁹, V. Verzi³², J. Vícha²⁵, D. Winn⁵², E. Zas⁷, M. Zotov⁴⁵

Ultra-High-Energy Cosmic Rays The Intersection of the Cosmic and Energy Frontiers

CONVENERS

A. Coleman¹, J. Eser², E. Mayotte³, F. Sarazin^{†3}, F. G. Schröder^{†1,4}, D. Soldin¹, T. M. Venters^{†5}

TOPICAL CONVENERS

CONTRIBUTORS

[†]Correspondence: fsarazin@mines.edu, fgs@udel.edu, tonia.m.venters@nasa.gov

Telescope Array now upgraded to TA*4 (start operation 2024) \rightarrow increasing size from 700 km² to 2800 km² (focussed to higher energies)

Auger upgraded to AugerPrime (start operation 2023) \rightarrow enhance composition capabilities to allow "proton astronomy" and enhance particle physics capabilities

Karl-Heinz Kampert - University of Wuppertal

Ongoing ...

MMAW Workshop, Pisa Oct. 10-12, 2022

Next...: Global Cosmic ray ObServatory (GCOS)

conceptual design, targeted at

- full efficiency at 10 EeV
- energy resolution <10%, muon resolution <10%
- Xmax better than 30 g/cm²
- angular resolution ~1°
- strong MM capabilities with photons and neutrinos

 \Rightarrow source correlations at 5 σ within one year of operation

Karl-Heinz Kampert - University of Wuppertal

- Distributed UHECR Observatory covering > 60,000 km²
- Several highly attended workshops were conducted for

concepts for simplified fluorescence telescopes

GRAND: Giant Radio Array for Neutrino Detection

UHECR

- UHECR as important second science case next to neutrinos
- various sites worldwide
 - main ones in China
- 200,000 km² total
 - inclined showers only
 - aperture of 100,000 km² sr
- Possibly X_{max} measurement in addition to energy, but no muon detection at most sites
 - mediocre mass resolution
- strengths is the high statistics
- common sites with GCOS possible, but different requirements on accuracy

POEMMA: Stereo Fluorescence Obs. from Space

- Two science cases: UHECR and neutrinos, both with full sky coverage
- Good X_{max} and ok energy resolution (\rightarrow mediocre rigidity resolution) and very high aperture
- Complementary to GRAND in many aspects: technology, space vs. ground, ...

POEMIMA-Stereo

Karl-Heinz Kampert - University of Wuppertal

POEMMA-Linnb

UHECRs in next two decades

- Auger and TA upgrades will lead the field for the next 10 years
- 4 main experiments identified for the decade afterwards that complement each other
 - 3 of them designed also (mainly) as neutrino observatories: IceCube-Gen2, GRAND, POEMMA
 - GCOS (Global Cosmic Ray Observatory) will be designed to deliver event-by-event rigidity for UHECR

Dimensional Hybrid array: fluorescence, Hadronic interactions, search for BSM,	
Fierre Auger Observatory surface $e/\mu \pm radio, 3000 \text{ km}^2$ UHECR source populations, σ_{p-Air} Auger Prime upgrade	
Telescope Array (TA)Hybrid array: fluorescence; surface scintillators; up to 3000 km²UHECR source populations proton-air cross section (\mathcal{G}_{R} -Air)TAx4 upgrade	
IceCube // IceCube-Gen2 Hybrid array: surface + deep; up to 6 km ² Hadronic interactions, prompt decays, Galactic to extragalactic transition Upgrade + surface / IceCube-Gen2 / IceCube	eCube opera
GRAND GRANDProto GRAND UB to 200:000 km² UHECR sources via huge exposure, Search for ZeV particles, ∂ _{P-Air} Search for ZeV particles, ∂ _{P-Air} Sources via huge exposure, 10k 10k 10k	P22001 ,stept
POEMMA Space fluorescence and UHECR sources via huge exposure, Cherenkov detector bearch for ZeV particles, <i>G</i> _{P-Air} JEM-EUSO program POEM	үүүд
GCOSHybrid array with $X_{\text{max}} \neq e/\mu$ UHECR sources via event-by-event rigidity, forward particle physics, search for BSM, σ_{p-Air} GCOSGCOSSver 40,000 km²67 ward particle physics, search for BSM, σ_{p-Air} R&D + first sitefurther	QS r _s sites
*All experiments contribute to multi-messenger astrophysics also by searches for UHE neutrinos and photons; 2025 2030 2035	

finicitios (recoube, ortrato), r obmany nave astrophysical neutrinos as primary science case.

nttps://arxiv.org/pdi/2205.05845

RI related Questions

• **TNA** UHECR do continuous all-sky observations \rightarrow no observer programs needed

• Data Management

- open data already implemented
- tools and sample scripts for analysis are provided
- ... allow reproducing published results
- open source software, heavily used by community
- distributed computing facilities for joint simulations, using also GPUs

• Tools

- alert tools: do exist but would profit from standardisation, both sending & receiving - regular workshops for training young scientists
- Societal Impact

 - geophysics data are 100% public, including tools - carbon footprint: observatories mostly run on solar power - visitors centres and regular citizen science programs

OUHRCR DAVIA RUIT OF SURPRISES • DRIVE EXTREME UNUBRSE • ESSENTIAL IN MILSTUDIES • FUTURE BEING PLANNED

Deflections: JF12 vs JF22a

