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Map of Underground Labs
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SN1987A: 1st SN v observation

e 23" Feb 1987

e ~50kpc

e Only 29 events
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Estimation of the binding energy and neutrino energy from SN1987A

» Consider:
« 12 neutrino observed in Kamiokande in 103 tons of water
« <E,>~10 MeV

12 = Ntarget ) iv ) (72 3 M[%IS ) MNS 2 10km
0~9.3-10" cm Ey=AE~—G—=~2"10"erg
N =6.7-10"' RNS MSun RNS

target

N, =F,(4aD*)=5.7-107 v.

E,=(E,)N, =5.7-10"° MeV =10 ergs for Ve



The Supernova model
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bar-v, : ~14-16 MeV

vy . ~14-16 MeV



SN neutrinos and neutrino oscillations

* Assume 2¢, = {yy + Oyr
* ¢ve = Fee ¢83 +(1- Pee)¢19x
° 2¢vx =(1- Pee)¢19€ +(1+ Pee)¢19x

° 2¢vx + ¢ve = 2¢8x + ¢193

* Pee depends on mass ordering and particle anti-particle nature



Probability of a galactic SN vs distance to the Sun
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Underground
Laboratories
and SN

neutrinos

ULs offer a unique opportunity to
detect SN neutrinos by different
and complementary techniques

Core-collapse SN emits different cosmic messengers:
neutrinos, gravitational wave, electromagnetic emission
and cosmic rays in a late stage

Neutrinos are a unique probe to trigger multi-messengers
observation/correlation

Present sensitivity goes beyond Milky Way edge

Rare event: ~ 1.6 /century

Detectors

 Liquid scintillators (LS) such as LVD, Borexino,
KamLAND, Juno, SNO+, others in CJPG and Yemilab

« Water Cherenkov such as SNO, SuperKamiokande,
Hyper-Kamiokande

» LXe and LAr detectors such as LZ, XENONNnT,XMASS,
DarkSide-20k, DUNE

* lceCube and Km3NET



Liquid
Scintillators

SN at 10 kpc with E,=3x10°3 erg

Main detection channel IBD
e ~ 200 events/kton

ES ~ 20 events/kton above 200 keV
CC on 12C ~ 15 events/kton

Neutrino-proton ES ~ 100
events/kton above 200 keV
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Neutrino-
proton ES

* A unique opportunity for NC
interactions

* Need sensitivity to low visible
energy (<1 MeV) due to quenching
effect

» ~80% of the signal above 200
keV thereshold is due to v,’s

« crucial to disentangle the
average energy of v, neutrinos

Events/dE/1kton

(Ex) = 16 MeV
500 —— —— —

Expected spectrum for vp ES
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Water Cherenkov detectors

* Main detection channel is IBD
* ES sub-dominant but with pointing capability
* CCon %0 for v,

* 10 kpc SN in Super-Kamiokande gives about 5° pointing accuracy, this
improves to about 3° with Gd (better IBD selection, so isolate ES
events). With Hyper-Kamiokande expected 1° accuracy



Super-Kamiokande

* Water Cherenkov with 22.5 kt fiducial mass
* Energy threshold 7 MeV
* Golden signal with a cluster of 260 candidates in 20s

* Main signal from IBD with ~10% events for 10 kpc SN

* Other channels:
* ES (directionality)
* v, capture on 10
* Gd loading enhances IBD detection opening new opportunities
* Pointing
* Pre-supernova alert



* Recently the horizon became larger

* Observation of neutrino-nucleus coherent scattering
« COHERENT Collaboration, Science, Aug. 3, 2017



Coherent neutrino-nucleus elastic scattering

do G; ., ME
= ZEFOo*MIl1-=- r
dE, 4m O 2F:
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CohNS vs IBD and CC v interactions

Cross section [10_38 sz]
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Basic requirement to detect cohNS

2
0~2539%x107" N

E 2 Target Mean recoil energy Number of

( v ) sz / kg [keV] events

A \MeV [ton']
Si 5.7 4.0
For the sake of the discussion: Ne 8.0 29

E, =15 MeV and ¢, = 102 cm?

Na 7.0 3.6

Ge 2.2 13.0
Ar 4.0 6.9

Xe 1.2 26.0

Te 1.3 25.6
Cs 1.2 26.1

I 1.2 24.6



Dark Matter Detectors to the rescue

v'Designed
» to detected low energy nuclear recoils (< 100 keV)

» to have high discrimination power between Electron Recoils
(ER) and Nuclear Recoils (NR)

* to have intrinsic low background due to the radio-purity of
selected detector components

* To have good fiducial mass determination

v'Look ideal for cohNS measurement and SN neutrino observation
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Massive LAr and LXe detectors

* Joining the underground network of detectors to probe for core-collapse
SN neutrinos

e Considering efforts made to search for DM and neutrinos these detectors
become crucials for some ULs

* Main detectors using LXe and LAr for DM direct detection
* LZ at SURF: ~ 360 events/7 t LXe for 10 kpc SN from v-nucleus coherent ES

e XENONNT at LNGS: ~ 100 events with 700 t Water Cherenkov veto IBD; ~300 events
from v-nucleus coherent ES

* To massive LAr detectors belongs DUNE

* 4 x 10 kt detectors
Special CC channel: v, + “°Ar — e + %K™ (E>1.5 MeV), order of 2x103 events
Other channels: ES, NC, bar- v, + 0Ar — e* + 40CI"
Absence of photons from de-excitation to distinguish ES (about 300 events)
DUNE TPC can also exploit directionality on ES at about 5°



More opportunities

* HALO at SNOlab with Pb target mass and 3H counters
* SN neutrinos will produce CC and NC on Pb
* Neutrons in final stage detected by counters

e CCon 3Cin organic LS
* 1% abundance
* Large cross section
* Specific for v,

e CCon °°Fe in LVD tanks

* Large cross section
* Specific for v,



Map of Underground Labs: SN detectors
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* IBD «golden» channel with Super-Kamiokande leading the field
e electron anti-neutrino observation

* Future massive LAr detectors to probe electron neutrinos in CC
interactions

* A second «golden» channel is coherent neutrino-proton scattering



Neutrino-proton ES and the Supernova
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Exploit cohNS with a SN: main feature

The measured number of events has a typical NC degeneracy problem
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Due to the fact that the cohNC spectrum is mainly from v, above threshold,

by measuring the spectrum we break the degeneracy between <E,> and

Ebinding_x-

This was pointed out by J. Beacom et al. for the v-p elastic scattering in organic
liquid scintillators in 2002



Breaking <E,>and E, , degeneracy

Reference SN: E,=16 MeV; E,_,=0.5x10°?erg (total energy is 10°3 erg)

LAr with ROl = [20,80] keVr
Select different E, and E,, to give the same number of events above threshold

E, changing from 12 to 20 MeV
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Probe SN parameters

Standard NR selection in LXe above 3 keVr with 10 tons of LXe

Testing a measured energy spectrum
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Pre-supernova neutrinos

* Emitted before collapse begins: O(180 days) and Si(2 days) burning
Neutrino produced by fusion reactions, electron-positron annihilation

Only ~1% of core-collapse event
* at the same detection sensitivity, SN distance reduced x10
 closer stars such as Betelgeuse and Antares can be observed

<< 10 MeV energy, peaked at a few MeV
* O burning: ~1 MeV
* Siburning: ~ 2 MeV
» detection more challenging, more background from natural radioactivity

KamLAND and Super-Kamiokande have implemented an alert for this signal

Super-Kamiokande with 0.01% Gd has a significant enhanced sensitivity
* 9 hours before collapse for Betelgeuse
* NO with x2 events wrt IO

Large detectors with LAr/LXe could also attempt this observation
e Very important to prepare multi-messenger observation



A netwrok to

provide a robust 100 ———————————————————————
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Supernova Early Warning System (SNEWS)

 Considering the multi-messenger nature of a core-collapse event
« Considering the low rate of about 1.6/century

» A network was established SNEWS1.0 (New J. Phys. 6 114, 2004) to provide
a prompt, pointing, and positive (3P) alert for a core-collapse event (see Kate
Scholberg, AN 329, No. 3, 337-339, 2008)

 First meeting on this topic in 1998
* In 2013: LVD, Super-Kamiokande, Borexino, KamLAND, and IceCube
* In 2015: added HALO and Daya Bay

* The network is being improved (SNEWSZ2.0) including new detectors from ULs
and enhancing the efficiency, gravitational waves detectors

(New J.Phys. 23 (2021) 3, 031201)



Hyper-Kamiokande

e Water Cherenkov with 217 kt fiducial mass

* For a 10 kpc SN about 10° IBD events and
103 ES events

* High directionality capability through ES
channel

* Tunnel excavation (2 km) started in 2021

* Tunnel reached the center of HK cavern in
June 2022

* HK cavern excavation 2022-2024
» Start operation 2027

. | 'i‘.'
/X
The center of HK dome, July 2022

-~



Long-baseline neutrino facility @ SURF

2 Detector Caverns:
145m L x 20m W x 28m H

1 Utility Cavern:
190m L x 20m W x 11m H

Aug 2023: north cavern excavation complete
*  Mar 2023: central utility cavern excavation complete

) L *  Oct 2023: south cavern excavation complete
Module of Opportunity «  Mar 2024: all concrete complete

(73m L x 20m W x 28m H) *  May 2024: infrastructure outfitting (18 months),
Temporary use of 50% of one of the LBNF caverns cryostat construction (24 months)
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Conclusions

» A core-collapse SN event offers a unique opportunity for a multi-messenger event
« Wrt to 1987 we expect order of x103 events with different detection channels

* A network of sensitive detectors is being established to provide an early and
robust alert for a core-collapse SN event: SNEWS2.0

« New detectors for DM and neutrino physics being included in the network
« Pointing capability improving significantly
« Crucial pre-supernova signal: challenging but feasible

» Detectors in ULs playing a crucial role to not miss such a unique event
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XMASS as SN detector

XMASS coll., Astrop. Phys. 89, 2017
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Only cohNS events with 832 LXe active mass for a 10kpc SN
Number of SN events very much depend on the SN model.
Due to threshold effect XMASS is mainly sensitive to neutrinos above ~ 15 MeV



Gold alert

 2-fold or greater coincidence in 10s depending on number of
experiments in the network

* Two experiments at different laboratoriesu
* Rate of false alarms (acc. coinc.) in involved experiments < 1/century

* Gold alert delivered to astronomical comunity



Underground Facilities

UG Facilities can provide:
Asia Southern
) . Hemisphere
+ Unique environments for 0

multi-disciplinary research )
.y . . Kimballton
+ Local radiation shielding - . or s8B! HyperK | voL
R o -2000 o
+ Assay capabilities 3 '
E‘ Canfranc ‘ °
. . e E Bouls
+Material production/purification £ ‘(+p?°‘;m¥,) Kamioka SUPL
I 9 _ (in progress)
+EnV|ronmentaI COI’]tFOl g 4000 O SURF Gran Sasso M J * Callio Lab i ( INOd)
. . (+ multiple levels) ropose
+ Implementation and operations 5 w/ LBNF  oceme "
it g SURF 4850L Baksan
SUppO % 6000 (+ proposed) . SNOLAB ANDES
L | (proposed)
+ Above-ground and underground SURF
i 7400L

support facilities (CR, Rn-free CR, ICP-MS, (e gt

HPGe, ....) -8000 Jinping - CJPL [+l
+ Advance training Note: Circles represent volume of science space

Adapted from Jaret Heise @ Snomass CSS 2022
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