Cosmic Explorer status and update

Evan Hall LIGO MIT

26 May 2019

Summary and status

Cosmic Explorer will proceed in two stages:

2030s: room-temperature glass at 1.0 μm (like aLIGO) 2040s: cryogenic silicon at 1.5 or 2.0 μm (like Voyager)

Summary and status

Cosmic Explorer will proceed in two stages:

2030s: room-temperature glass at 1.0 μm (like aLIGO) 2040s: cryogenic silicon at 1.5 or 2.0 μm (like Voyager)

Now:

more realistic estimates of low-frequency noises (fundamental and technical) set requirements on infrastructure based on geophysical noises and scatter estimates vacuum system concepts

Summary and status

Cosmic Explorer will proceed in two stages:

2030s: room-temperature glass at 1.0 μm (like aLIGO) 2040s: cryogenic silicon at 1.5 or 2.0 μm (like Voyager)

Now:

more realistic estimates of low-frequency noises (fundamental and technical) set requirements on infrastructure based on geophysical noises and scatter estimates vacuum system concepts

Collaborating institutions in the US:

Caltech: R. Adhikari, Y. Chen; Cal State Fullerton: G. Lovelace, J. Read, J. Smith; Penn State: B. Sathyaprakash; Syracuse: S. Ballmer, D. Brown; MIT: M. Evans, S. Vitale.

A two-stage approach

LIGO Laboratory, (2019), arXiv:1903.04615

The Lab has not yet converged on a post-A+ timeline for the 4 km facilities.

The Lab has not yet converged on a post-A+ timeline for the 4 km facilities. Should Voyager be installed

...as soon as the technology is ready? ...or when the disruption to the global network will be minimal?

The Lab has not yet converged on a post-A+ timeline for the 4 km facilities. Should Voyager be installed

...as soon as the technology is ready? ...or when the disruption to the global network will be minimal?

Hinges on several unknowns:

When will Voyager technology be ready? Which detectors will be online after 2025, and with what sensitivity? How many facilities would be upgraded to Voyager? Under what conditions would the astro community tolerate a multiyear shutdown of 4 km facilities?

Next-generation vacuum systems

Since the '90s...

Lessons learned: microbial-induced corrosion, leak detection strategy New developments: plain carbon steel may have acceptable outgassing New ideas: double-walled vacuum system, anti-adsorption coatings

NSF-sponsored workshop on large ultrahigh-vacuum systems (Jan 2019) https://dcc.ligo.org/LIGO-P1900072 (F. Dylla, R. Weiss, M. Zucker, eds.; good attendance from outside the GW community)

The canonical CE noise budget

Some important noises are not included (atmospheric Newtonian noise, scattered light)

Others are not estimated in full detail (seismic Newtonian noise)

Some detector parameters are not optimized for maximum science payoff (work in progress: V. Srivastava, S. Ballmer, D. Brown)

Beyond 2G seismic isolation

3G seismic isolation platforms will employ (we hope) superior inertial sensors; e.g., Birmingham's HoQI.

Prospects for "LIGO-LF": H Yu et al., Phys. Rev. Lett. **120**, 141102 (2018)

Scattered light

J. Smith, after H. Yu

As a first pass: estimate based on power scattered from tube and baffles.

Scattered light

J. Smith, after H. Yu

As a first pass: estimate based on power scattered from tube and baffles.

Still to do: coherent estimate, taking into account both mirror roughness and point scatterers.

Civil engineering and geophysics

Civil engineering and geophysics

What earthwork minimizes seismic Newtonian noise: berms, trenches, henges, strata...?

Seismic metamaterials: resonators, boreholes, trees... (B. Kamai) Does this earthwork also minimize atmospheric Newtonian noise? What is the variability in geophysical noise between potential sites? What are the limits to geophysical noise subtraction? The usual seismic Newtonian noise estimate is highly idealized (Rayleigh waves traveling in a homogenous, isotropic half-space).

The usual seismic Newtonian noise estimate is highly idealized (Rayleigh waves traveling in a homogenous, isotropic half-space). But

the ground is neither homogenous nor isotropic (perhaps intentionally) excavating a few meters underneath the test mass will help placing the test mass buildings on berms will also likely help The usual seismic Newtonian noise estimate is highly idealized (Rayleigh waves traveling in a homogenous, isotropic half-space). But

the ground is neither homogenous nor isotropic (perhaps intentionally) excavating a few meters underneath the test mass will help placing the test mass buildings on berms will also likely help

Numerical simulation in progress (B. Lane)

Atmospheric Newtonian noise

So far: analytical estimates Unclear if subtraction is fea-

sible Work in progress: fluid dy-

Work in progress: fluid dy namics simulation

Controls design

Also working on actuator design, including radiationpressure drive for differential arm length.

Work in progress: incorporating angular control noise

Next steps

Coherent scatter estimates, including point defects \longrightarrow beam tube and baffling requirements

Realistic Newtonian noise estimates \longrightarrow civil engineering requirements; subtraction requirements

Angular control noise estimates \longrightarrow seismic, suspension, and sensor requirements