g2net WG3 training school on Machine learning for advanced control techniques

G2NET

Einstein Telescope site characterisation measures and their impact on the third generation GW detectors

Luca Naticchioni (INFN Roma)

This lecture is composed of two parts:

- I. Presentation: *Einstein Telescope site characterisation measures and their impact on the third generation GW detectors*.
- II. Exercitation with seismic data from surface and underground stations.

Part I summary:

□ Introduction: The Einstein Telescope project

Environmental sources of noise vs ET sensitivity

Site selection criteria

EUregio Meuse-Rhine candidate site

Sardinia candidate site

□ A practical example: site characterisation activities in Sardinia

□ Seismic noise analysis

MG2NET

Where we are with Advanced GW Detectors

- 2nd generation GW detectors will explore local Universe, initiating the precision GW astronomy, but to have cosmological investigations a factor of 10 improvement in terms detection distance is needed
- Farther event in GWTC-2 are at $z \approx 0.71$
- 3G ground-based detectors will be required to access the high redshift Universe

Detection Range of GWD

Image credit: NAOJ/ALMA http://alma.mtk.nao.ac.jp/

ET EINSTEIN TELESCOPE

FOFE

The Einstein Telescope

...and Cosmic Explorer (CE) in USA

Joni – ET site characterention - g2Net WG3 training school

Einstein Telescope

ET is a 3G new GW observatory in Europe

≻3G:

- Sensitivity a factor 10 better than 2G (advanced) detectors
- 50-years lifetime infrastructure (→compliant with the upgrades of the hosted detectors)

>Observatory:

- broadband, focused to low frequency (few Hz)
- Capability to work *alone* (depending on international scenario)
 - Localisation capability (limited if alone)
 - *Polarisation* discrimination (→triangle configuration)
 - High *duty cycle* (→redundancy)

Einstein Telescope

ET is a 3G new GW observatory in Europe

Optical element

Silicon,

cryogenic

Ontical element

room temperatur

Triangle configuration: 3 detectors

- Xylophone configuration: 6 interferometers (3HF + 3LF)
- Interferometer orientations for both polarisations
- Co-aligned interferometers (→null streams)
- Redundancy for duty cycle
- Single infrastructure for cost efficiency
- Underground and cryogenic (LF)

→ tomorrow's lecture by S. Hild!

IGANET ET MISSION ET Design ...quite complicated wrt current generation GWDs Example: Corper Layout

L. Naticchioni – ET site characterisation - g2Net WG3 training school

Credit: A.Freise, 2020 XI ET Symposium

G2NET ET EINSTEIN ET Design

...quite complicated wrt current generation GWDs

INGENET ET TELESCOPE ET Design

Parameter	ET-D-HF	ET-D-LF	0
Arm length	$10\mathrm{km}$	$10\mathrm{km}$	Einstein Telescope
Input power (after IMC)	$500\mathrm{W}$	$3\mathrm{W}$	Xylophone option (ET-C)
Arm power	$3\mathrm{MW}$	$18\mathrm{kW}$	Each detector (red, green and blue) consists of two Michelson inter-
Temperature	$290\mathrm{K}$	$10\mathrm{K}$	ferometers. The HF detectors need one filtercavity each, while the LF detectors resulting 2 filter cavities and FC) = 45 for linerar filtercavities and FC) = 45 for
Mirror material	fused silica	silicon	each due to the use of detuned
Mirror diameter / thickness	$62\mathrm{cm}$ / $30\mathrm{cm}$	min $45 \mathrm{cm}/\mathrm{T}$	
Mirror masses	$200 \mathrm{kg}$	211 kg	Environmental Design Study
Laser wavelength	$1064\mathrm{nm}$	1550 nm	
SR-phase	tuned (0.0)	detuned (0.6)	
SR transmittance	10%	20%	
Quantum noise suppression	freq. dep. squeez.	freq. dep. squee	
Filter cavities	$1 imes10\mathrm{km}$	$2 imes10\mathrm{km}$	
Squeezing level	$10 \mathrm{dB}$ (effective)	$10 \mathrm{dB}$ (effective)	
Beam shape	LG_{33}	TEM_{00}	
Beam radius	$7.25\mathrm{cm}$	$9\mathrm{cm}$	Red-LF Red. He
Scatter loss per surface	$37.5\mathrm{ppm}$	$37.5\mathrm{ppm}$	Blu-LF
Seismic isolation	SA, 8 m tall	mod SA, 17 m t	out-dessessessessessessessessessessessessess
Seismic (for $f > 1 \mathrm{Hz}$)	$5\cdot 10^{-10}{ m m}/f^2$	$5 \cdot 10^{-10} \mathrm{m}/f^2$	ET Design Study, 2011
Gravity gradient subtraction	none	none	

ET EINSTEIN EINSTEIN Einstein Telescope

Why we need 3G GW observatory?

- To observe Merging Black Holes throughout the whole universe and reconstruct BH demography
- To explore new physics in gravity and fundamental properties of compact objects
- > To study the **properties of the hottest matter** in the universe
- To investigate the connection between high energy processes in radiation/particle and gravitation
- > To investigate **primeval universe** and connections with particle physics
- > To investigate the **Dark Universe** (95%)

Coalescence of compact binary objects

ETEINSTEIN EINSTEIN EINSTEIN EINSTEIN

Big challenges in terms of DA and computing: longer signals, subtle physics effects, huge number of events, 'noise' foreground,...
 But the reward will be impressive

ET project status

Credit: M.Punturo, 2020 XI ET Symposium

Building ET

- A key step to enter in a new phase of the ET project has been the preparation and the submission of the ET proposal to the "2021 update of the ESFRI* roadmap"
 - Prepared by the ET steering committee
 - It allowed to focalise the science, the design, the timeline, the cost and the organisation of the project
- Updated science case
- Updated design of the ET infrastructure
- New timeline
- Updated cost evaluation
- Evaluation of the social and economic impact
- A teams of European governments supporting ET
- A large consortium of institutions promoting the ET project

***ESFRI**: European Strategy Forum on Research Infrastructures

ESFRI Roadmap

European Strategy Forum on Research Infrastructures

ROADMAP 2021

ESFRI

ET CA signed by 41 institutions
 INFN and Nikhef are the coordinators of the consortium

ET EINSTEIN

CALL FOR PROPOSALS

New Deadline September 9th, 2020

Proposal submitted by:

- Italy (Lead Country)
- Netherlands
- Belgium
- Spain
- Poland

Building ET

On June 30th 2021, ET was adopted into the ESFRI roadmap!

🖰 01 LUGLIO 2021

ET ED EUPRAXIA CON L'ITALIA CAPOFILA ENTRANO NELLA ROADMAP DI ESFRI

ET Einstein Telescope ed EuPRAXIA: due grandi infrastrutture di ricerca competitive a livello mondiale, rispettivamente nella ricerca sulle onde gravitazionali e nello sviluppo di futuri acceleratori di particelle al plasma. Sono questi i due progetti internazionali di cui l'INFN Istituto Nazionale di Fisica Nucleare è capofila, e che l'Italia attraverso il MUR Ministero dell'Università e della Ricerca ha candidato lo scorso settembre per la Roadmap 2021 di ESFRI European Strategy Forum on Research Infrastructure, il forum strategico europeo che individua le grandi infrastrutture di ricerca su cui investire a livello europeo. Dopo un lungo e accurato processo di valutazione dei progetti candidati, il 30

giugno, l'Assemblea di ESFRI ha approvato entrambi, ET ed EuPRAXIA, che entrano così nel novero delle grandi infrastrutture di ricerca su cui l'Europa punterà nel prossimo futuro.

"L'inclusione di ET ed EuPRAXIA nella Roadmap di ESFRI è un importante risultato che ne rafforza il valore strategico a livello europeo", commenta **Antonio Zoccoli, presidente dell'INFN**. "Le grandi infrastrutture di ricerca sono una risorsa per la scienza e la conoscenza, ma anche per lo sviluppo industriale, l'innovazione tecnologica, la crescita economica, culturale e sociale. Forti della leadership scientifica del nostro Paese a livello internazionale, metteremo il massimo impegno per il loro sviluppo, e per valorizzare la candidatura del sito italiano a ospitare ET, e siamo certi che con il sostegno del MUR, della Regione Sardegna, delle Istituzioni nazionali e locali, abbiamo ottime possibilità di raggiungere l'obiettivo, a beneficio del territorio e del Paese".

L'Italia, con la Sardegna, è uno dei due siti candidati a ospitare ET, e vi partecipa con l'INFN, l'INAF Istituto Nazionale di Astrofisica e l'INGV Istituto Italiano di Geofisica e Vulcanologia, e le Università di Sassari e Cagliari. La sede principale di EuPRAXIA, progetto cui il nostro Paese

Einstein Telescope approved for ESFRI Roadmap 2021

1 July 2021

On June 30th, the European Strategy Forum on Research Infrastructures (ESFRI) decided to include the Einstein Telescope in the 2021 upgrade of its roadmap. This confirms the relevance of this major international project for a next generation gravitational waves observatory for the future of research infrastructures in Europe and gravitational wave research at a global level.

Building ET

On June 30th 2021, ET was adopted into the ESFRI roadmap!

- Why it is so important for ET to be in the ESFRI roadmap?
 - ESFRI has not funds
 - But to be in the ESFRI roadmap:
 - Is a quality stamp that certifies the readiness level of the project: it states the passage from the design phase to the preparatory phase
 - Allows to access a (small) financial support from the European Commission for the preparatory phase
 - Allows to access specific (and potentially large) national and regional funds in Europe
 - Facilitates the coordination of different European countries at government level targeting the realization of the infrastructure

Which site?

We'll go back to the site selection issue in the next sections

Part I summary:

□ Introduction: The Einstein Telescope project

□ Environmental sources of noise vs ET sensitivity

- Site selection criteria
- Euregio Meuse-Rhine candidate site
- Sardinia candidate site
- □ A practical example: site characterisation activities in Sardinia
- Seismic noise analysis

The target is to improve of a factor 10 the advanced detector sensitivity:

L. Naticchioni – ET site characterisation - g2Net WG3 training school

MG2NET Sources of noise in ET **E**T **E**INSTELESCOP

The several sources of noise affecting the Interferometer define its sensitivity curve:

L. Naticchioni – ET site characterisation - g2Net WG3 training school

GEANET Sources of noise in ET

The several sources of noise affecting the Interferometer define its sensitivity curve:

L. Naticchioni – ET site characterisation - g2Net WG3 training school

GENET Sources of noise in ET ET

The several sources of noise affecting the Interferometer define its sensitivity curve:

- at low frequency seismic and Newtonian
 Noise (NN) are the main limitations to the detector sensitivity, in particular in the case of the LF ITF.
- an important component of NN is produced by seismic waves (body P-waves and surface Rayleigh waves)

→ today's lecture by F. Badaracco!

another component of NN is related to air pressure fluctuations → acoustic
 at low frequencies also the magnetic noise may spoil the detector sensitivity

- **The Background Seismic Noise** is generated by **natural sources** and **human activities** (*cultural* or *anthropic seismic noise*)
 - It can be described as a quasi-stationary stochastic process
 - At low frequency (< 1 Hz) is generated by non-local sources (e.g. microseisms from oceans and seas, atmospheric pressure, tides); high coherence (>70%)
 - Around 1 *Hz* the sources are local (e.g. weather: wind, rain...)
 - At high frequency (> 1 *Hz*) cultural noise; low coherence (>30%)
 - Empirical law: $\tilde{x}_s(f) \approx \frac{10^{-7}}{f^2} \frac{m}{\sqrt{Hz}}$

- A standard reference of the seismic background on Earth is given by the **Person's models**: the New Low Noise Model (NLNM) and the New High Noise Model (NHNM):

Seismic noise

Seismic waves can be:

Body Waves: propagating in the interior of the Earth, smaller amplitudes and wavelengths than surface waves, but travelling at higher speeds

- Primary (P-Waves): longitudinal particle motion along propagation direction, compressional waves, fastest waves
- Secondary (S-Waves): shear waves, transversal particle motion, slower than P-Waves
- Surface Waves: interaction of P- and S- waves, propagation confined in the superficial layers of Earth's crust. Lower frequencies and larger amplitudes than body waves
 - Love Waves: horizontal-polarized S-Waves, not compressional
 - **Rayleigh Waves**: particle motion is a retrograde rolling: superposition of vertical-polarized S-Waves and P-Waves, *compressional*

Seismic waves can be:

Body waves

Surface waves

Primary: shallow waters of coastal regions, pressure variation and impact on the shores (0.06-0.1 *Hz*)

Secondary: offshore, superposition of ocean swell, standing waves, non-linear process (0.1-0.2 *Hz* for oceans, 0.3-0.5 for smaller seas or even big lakes)

Seismic noise

Microseisms: Main peak around 0.2 *Hz*

L. Naticchioni – ET site characterisation - g2Net WG3 training school

Seismic wave attenuation:

> Depth-dependence:

empirical law:
$$\tilde{x}_{seism}(f, z = d) \approx \tilde{x}_{seism}(f, z = 0)e^{-4d/\lambda}$$

- Mechanical Filter: pendulum chain (e.g. Virgo Super-Attenuator) or active feedback platforms (e.g. in LIGO)
- e.g. Horizontal transfer function:

for $f \gg f_i$ (resonant frequencies):

A chain of pendula is equivalent to a *mechanical low-pass filter* proportional to f^{2N} (N stages)

(seismic) Newonian noise

Mechanical filters **cannot** shield a gravitational test mass from the Newtonian Noise, i.e. a gravity gradient:

L. Naticchioni – ET site characterisation - g2Net WG3 training school

Seismic and NN reduction

It is clear that *going underground* (far from surface waves) is a good strategy to reduce the seismic noise and the (sesmic-induced) Newtonian noise.

That's why the Einstein Telescope will be an **underground** observatory!

- initial design $\sim 200 300 m$
- it depends on the site specs (seismic background at surface, soil and rock layers...)
- a minimal depth of tens of *m* may be required to shield from atmospheric NN
- seismic NN vs. sustainable NN subtraction setup (see today's lecture by F. Badaracco)

Site characterisation is required!

Part I summary:

- □ Introduction: The Einstein Telescope project
- □ Environmental sources of noise vs ET sensitivity
- □ Site selection criteria
- Euregio Meuse-Rhine candidate site
- Sardinia candidate site
- □ A practical example: site characterisation activities in Sardinia
- Seismic noise analysis

Site selection criteria

Defining the site selection criteria is not a trivial task. What matters:

- Geological conditions
- Hydrogeological conditions
- Geotechnical conditions vs infrastructure

- Expected detector lifetime
 - Detector requirements

MG2NET

Site selection criteria

- Seismic fields:
 - Long-duration measurements (surface & underground) with seismometers
 - Seismometer Array measurements (short-duration), active and passive
 - Modelization
- Atmospheric fields:
 - Microphone array measurements
 - Local wind speed measurements
 - Modelization
- Electromagnetic fields:

A description of the site selection criteria and suggested measurements is available in *F.Amann et al, Rev. Sci. Instrum. 91 (2020)*

- Local field measurements with magnetometers (surface & underground)
- Global field measurements with magnetometers (e.g. Schumann resonances, surface & underground)
- Modelization (tricky, many possible channels, depends on the details of the detector)
- Geotechnical and geographical surveys

Part I summary:

- □ Introduction: The Einstein Telescope project
- Environmental sources of noise vs ET sensitivity
- Site selection criteria
- **□** Euregio Meuse-Rhine candidate site
- Sardinia candidate site
- □ A practical example: site characterisation activities in Sardinia
- Seismic noise analysis

Euregio Meuse-Rhine site

- The site is at the border between Netherlands, Belgium and Germany
- Characterisation activities at Terziet, and planned in other locations around

Euregio Meuse-Rhine site

- a 250m deep borehole excavated and equipped (surface & downhole long-duration measurement and analysis ongoing);
- Other 3-5 boreholes expected;
- Extensive active and passive site characterisation with sensor arrays in 2021;
- Good seismic noise attenuation underground given by the geological structure (interface between first layer of soft soil and hard bedrock layer below);
- ET pathfinder centre under construction;
- 15+15M€ funding through Interreg grants.

IG2NET Eureg

Euregio Meuse-Rhine site

Studies of quality at potential Euregio Meusse-Rhine (EMR) site

The geology of the EMR Limburg border area: hard rock with on top a layer of soft absorbing and damping soil

Euregio Meuse-Rhine site

Noise attributes

- · We characterize the underground and the surface seismic environment for a period between Nov. 2019 to Oct. 2020
- · STS-5A seismometer stationed at a depth of 250 m and a Trillium-240 seismometer on the surface
- Surface seismic noise peaks at 4 Hz and 9 Hz in the horizontal and vertical component, respectively
- The attenuation (PSD_{surface}/PSD_{underground}) at high frequencies can be attributed to body waves

Credit: S. Koley, GWADW 2021

Part I summary:

- □ Introduction: The Einstein Telescope project
- Environmental sources of noise vs ET sensitivity
- □ Site selection criteria
- Euregio Meuse-Rhine candidate site
- □ Sardinia candidate site
- □ A practical example: site characterisation activities in Sardinia
- Seismic noise analysis

The Sardinia site

- Long standing characterisation of the mine in one of the corners continuing;
- Seismic, magnetic and acoustic noise characterisation ongoing at different depths in the mine;
- Underground laboratory under construction (SarGrav)
- Two boreholes (265m and 280m deep) excavated, to be equipped in September 2021;
- Intense & international surface array investigations programme in Summer 2021;
- 17+3.5+1+11M€ funding through national and regional funds.

G2NET The Sos Enattos site in Sardinia

L. Naticchioni – ET site characterisation - g2Net WG3 training school

INET The Sos Enattos site in Sardinia

MGINET The Sos Enattos site in Sardinia

Sos Enattos former mine

- Maintained (by IGEA SpA) underground access via tunnels and shaft;
- Site studied in 2010-2014. Long-term sensors deployment since March 2019;
- Hosts the SarGrav Laboratory (surface lab operative, underground lab under construction).

Part I summary:

- □ Introduction: The Einstein Telescope project
- Environmental sources of noise vs ET sensitivity
- □ Site selection criteria
- Euregio Meuse-Rhine candidate site
- Sardinia candidate site
- □ A practical example: site characterisation activities in Sardinia
- Seismic noise analysis

G2NET Characterisation of the Sardinia site

Measurement stations at the Sos Enattos corner:

- SarGrav surface Lab + Control Room; -
- **SOE0** (surface);
- Instrumented stations **SOE1**, **SOE2**, **SOE3** (86m, 111m, 160m underground).

Sensors currently installed:

- 5(6) broadband triaxial seismometers (*Nanometrics Trillium 360, 240 & 120 Horizon, Guralp* CMG-3TD 360);
- 2 magnetometers (*MF6-06*);
- 5(+3) short-period triaxial seismometers (*Nanometrics Trillium 20PH*, first seed of a transportable array);
- High Precision Tiltmeter (part of the *Archimedes* experiment @ SarGrav)
- Weather station (@ SarGrav Lab).

Work in progress: new sensors (seismometers, magnetometers, microphones) will be added to the network in the next months L. Naticchioni – ET site characterisation - g2Net WG3 training school 52

Sos Enattos measurement stations (2019-2020)

Rampa Tupeddu entrance

SOE2 (-111m)

369.

SarGrav Control Room (340 m asl)

Sos Enattos measurement stations (2019-2020)

Sos Enattos measurement stations (since Aug. 2020)

EXAMPLE Characterisation of Sos Enattos

SARGRAV surface lab & control room

DAQs, Network connections, weather stations, *Archimedes* tiltmeter, T20 seismometers

Characterisation of Sos Enattos

SARGRAV surface lab & control room

G2NET Characterisation of Sos Enattos

SOE0 station (*since December 2019*)

TRILLIUM 240s + Taurus DAQ

SOE1 station (84m underground, Mar. 2019 – June 2020)

TRILLIUM 240s + Taurus DAQ

SOE1 station (84m underground, *since June 2020*)

TRILLIUM 120 Horizon + Centaur6 DAQ + Guralp 360 (since July 2021)

DAQ input range reduced to 4Vpp (WRT 40Vpp standard settings);

- \rightarrow Effective reduction of DAQ self noise in the few Hz band;
- \rightarrow Measured noise floor hits the Earth Person's Low Noise Model.

MG2NET Characterisation of Sos Enattos

SOE2 station (111m underground, *since March 2019*)

Double wall + insulation box + *pasta-pot* insulation

1x TRILLIUM 240s (until June 2021) 2x TRILLIUM 360s (from July 2021) Centaur6 DAQ

SOE2 station (111m underground, *since March 2019*)

Double wall + insulation box + *pasta-pot* insulation

Characterisation of Sos Enattos

SOE2 station (111m underground, *since March 2019*)

ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA

Seismic Station SENA Sos Enattos Mine

Network: IV Start Date: 2019-10-18T00:00:00 End Date: --Latitude: 40.4444 Longitude: 9.4566 Elevation: 338 Download StationXML

Number of channels: 3

ist

Code	Location Code	Start Date	End Date	Data Restriction
HHE		18-10-2019		open
	Latitude: 40.4444		Azimuth: 90	
	Longitude: 9.4566		Sample Rate: 100	
	Elevation: 338		Storage Format: Ste	im2
	Depth: 111		Sensitivity Value: 47	8760000

SOE2 station is integrated into the Italian national seismometer network of INGV (<u>SENA station</u>)

http://cnt.rm.ingv.it/en/instruments/station/SENA Public data access T240 Until June 2021, T360 from July 2021 (with reduced input range 4Vpp)

Characterisation of Sos Enattos

Surface Seismometers Array Local noise sources and Noise modelization

A surface array made of tens of seismometers (12 Trillium120 + 3 Trillium20 provided by INGV & INFN) have been installed at Sos Enattos in January-February 2021

The **results** of the first 2-years of seismic characterisation at the Sos Enattos corner have been published in:

- L. Naticchioni et al., *Characterization of the Sos Enattos site for the Einstein Telescope*, JPCS 1468, 2020
- M. Di Giovanni et al., A seismological study of the Sos Enattos Area the Sardinia Candidate Site for the Einstein Telescope, SRL, 2020 https://doi.org/10.1785/0220200186
- A. Allocca et al., Seismic glitchness at Sos Enattos site: impact on intermediate black hole binaries detection efficiency, EPJP, 2021 https://doi.org/10.1140/epjp/s13360-021-01450-8

A Seismological Study of the Sos Enattos Area—the Sardinia Candidate Site for the Einstein Telescope

Matteo Di Giovanni^{*1,2,3}, Carlo Giunchi¹, Gilberto Saccorotti¹, Andrea Berbellini⁴, Lapo Boschi^{4,5,6}, Marco Olivieri⁴, Rosario De Rosa^{7,8}, Luca Naticchioni^{9,10}, Giacomo Oggiano^{11,12}, Massimo Carpinelli^{11,12}, Domenico D'Urso^{11,12}, Stefano Cuccuru^{11,12}, Valeria Sipala^{11,12}, Enrico Calloni^{7,8}, Luciano Di Fiore⁷, Aniello Grado¹³, Carlo Migoni¹⁴, Alessandro Cardini¹⁴, Federico Paoletti¹⁵, Irene Fiori¹⁶, Jan Harms^{2,3}, Ettore Majorana^{9,10}, Piero Rapagnani^{9,10}, Fulvio Ricci^{9,10}, and Michele Punturo¹⁷ Seismic glitchness at Sos Enattos site: impact on intermediate black hole binaries detection efficiency

A. Allocca^{1,2}, A. Berbellini³, L. Boschi^{3,4,5}, E. Calloni^{1,2,a}, G. L. Cardello^{6,7}, A. Cardini⁸, M. Carpinelli^{6,7,9}, A. Contu^{8,10}, L. D'Onofrio^{1,2}, D. D'Urso^{6,7},

... another publication about the features of the seismic noise at the site is in preparation

Amplitude decay with depth significant only for f>2Hz, consistent with Rayleigh-wave propagation in local rocks

L. Naticchioni – ET site characterisation - g2Net WG3 training school

Reduced input range \rightarrow reduced DAQ self noise \rightarrow environmental seismic noise floor below the standard seismometer settings in few Hz band, **close to NLNM** (here SOE1, 84m depth)

L. Naticchioni – ET site characterisation - g2Net WG3 training school

70

Seasonal Microseismic variations in 2020

Seasonal Microseismic noise trend in 2019-2021

Newtonian Noise & seismic glitches (based on 2020 data at SOE1, -84m)

P(NRT<1)=0.6, considering only the nights: $P(NRT<1)_n=0.86$ \rightarrow Need for moderate NN subtraction only for a limited time Eur. Phys. J. Plus (2021) 136:511

Defining the Newtonian Noise ASD as:

$$\tilde{h}_{NN}(f) = \frac{4\pi}{3} G\rho_0 \frac{2\sqrt{2}}{L} \frac{1}{(2\pi f)^2} \tilde{x}(f)$$

Newtonian Noise & seismic glitches (based on 2020 data at SOE1, -84m)

...doing the same exercise with Terziet site (-250m) public data:

Seismometer array results

Seismometer array results

Vehicle Tracking close to the site

Time evolution of azimuth compatible with a vehicle traveling at 60 km/h southward along road SP73.

Largest signal amplitude is NOT associated when the vehicle is closest to the array, but when it traverses bridge B2

Seismometer array results

Probability density of particle motion Azimuth, Incidence Angle and Degree of Polarization as a function of frequency.

Polarization angle [0°- 180°]: the ellipsoid dips to East. Polarization angle [180°- 360°]: the ellipsoid dips to West.

characterisation - gzivet vvG3 training school

Seismometer array results

Polarization analysis

At low frequencies, the polarization directions are rather uniform; they are oriented toward NW (see marine microseismic source).

Seismometer array results

Polarization analysis

At higher frequencies, the variability of polarization directions throughout the array deployment indicates a strong influence of topography.

Very low electromagnetic noise observed at the site

SOE2 (underground) magnetometer.

Credit: NASA/Goddard Space Flight Center/Conceptual Image Lab

L. Naticchioni – ET site characterisation - g2Net WG3^{Frequency [Hz]}

Credit: M.C. Tringali,

ET-0005A-20

In July 2021 we started the surface and underground seismic and environmental measurements at the other two corners (named *Bitti* and *Onani*).

NET

Bitti corner, borehole area

NET

- Excavation of two boreholes (265m and 280m deep) at the corner points P2 and P3. The drilling and consolidation of the boreholes has been started in April 2021 and completed in July 2021.
- The borehole walls are equipped with optical fiber strainmeters, and they will be equipped with borehole seismometers (Trillium 120BH) in September 2021. Two Trillium 120H will be installed at surface for comparison (vault installation)

- Active seismic measurements at P2 and P3 with a vibration source (minivib vehicle) with hundreds of geophones installed in the field (~1km strings and array) and downhole + optical fiber strainmeter in July 2021;
- Data is being processed and analysed.

L. Naticchioni – ET site characterisation - g2Net WG3 training school

DI GEOFISICA E VIII CANOLOGI

Part I summary:

- □ Introduction: The Einstein Telescope project
- Environmental sources of noise vs ET sensitivity
- □ Site selection criteria
- Euregio Meuse-Rhine candidate site
- Sardinia candidate site
- □ A practical example: site characterisation activities in Sardinia
- **Geismic noise analysis**

Seismic data analysis

A common data format for seismic data is the **SEED** (Standard for the Exchange of Earthquake Data) or **mini-SEED**, in which the timeseries are recorded with minimal metadata informations.

More info at: https://ds.iris.edu/ds/nodes/dmc/data/formats/seed/

In the **mini-SEED** the time series are stored as generally independent, fixed length data records which each contain a small segment of contiguous series values. A reader of miniSEED is required to reconstruct longer, contiguous time series from the data record segments. Common record lengths are 512-byte (for real time streams) and 4096-byte (for archiving), other record lengths are used for special scenarios.

A *file* or *stream* of miniSEED is simply a concatenation of data records. Depending on the capabilities of the intended reader the data records for multiple channels of data may be multiplexed together.

Seismic data analysis

In the next exercitations we will see two ways to access and analyse the seismic data:

- 1. Accessing stored seed files with MatLab functions;
- 2. Using the ObsPy environment under Python to access data directly from seismic stations in the network.

Requirements:

(1) Having MatLab installed on your laptop

(2) Having ObsPy installed on your laptop (see the guide distributed before the lecture:

https://drive.google.com/file/d/1LgzzPIwK52_rT_btW1tw4Cem4RJch1e4/view?usp=sharing

At the end of each part you will find some exercitations you can try by yourself

Exercitations with seismic data

Part II

Part II summary:

□ Reading and extracting seismic data with MatLab

□ Reading and extracting seismic data with ObsPy (Python environment)

Exercitation with SOE2 (Sardinia site) data

Exercitation with Terziet (Meuse-Rhine site) data

Exercitation with LNGS (underground laboratory) data

Other proposed exercitations

Reading and extracting seismic data with MatLab

Under MATLAB it is possible to open a SEED or mini-SEED file and to extract the timeseries in ASCII format using the function "RDMSEED.m"

https://it.mathworks.com/matlabcentral/fileexchange/28803-rdmseed-and-mkmseed-read-and-writeminiseed-files

Example:

Open a seed containing the vertical channel recorded by a T240:

Reading and extracting seismic data with MatLab

Under MATLAB it is possible to open a SEED or mini-SEED file and to extract the timeseries in ASCII format using the function "RDMSEED.m" *https://it.mathworks.com/matlabcentral/fileexchange/28803-rdmseed-and-mkmseed-read-and-write-*

miniseed-files

Example:

Extract the timeseries in an ASCII file using the RDMSEED function with a little script I prepared: RWseedTOAscii.m

https://drive.google.com/file/d/1mtajh25kv59EksCMqaIjFON8z3MDAMmo/view?usp=sharing

At this point, knowing the -1.6060000e+03 -1.5870000e+03 -1.5530000e+03 sampling rate f and the -1.6220000e+03 -1.5690000e+03**conversion factor** (cnt/m/s) -1.5550000e+03 -1.5800000e+03 you can calculate the power -1.5460000e+03 -1.5680000e+03 spectral density... -1.5150000e+03 -1.5650000e+03

Reading and extracting seismic data with MatLab

Proposed exercitation with real data:

https://drive.google.com/drive/folders/1jF91fdL8suy76-Bav8aS-vLUUvv3cX8s?usp=sharing

The mini-SEED files are from the three seismic station at Sos Enattos (Sardinia): **SOE1**, **SOE2**, **SOE3** They are located in seed-data/soe*/, where you can find a mini-SEED for each direction (N-S, E-W, Z).

Try to extract the timeseries and to calculate the PSD. You can find in *seed-data/soe*/PSD/* what you should obtain: PSD in acceleration, velocity, displacement, and four arrays of data (frequency and the PSD for each direction). *Hint: plot the median value of PSD*

The seismometer DAQs have a common timing reference. Start time: 05:00 AM UTC, 3rd July 2021 End time: 05:00 AM UTC, 5th July 2021 Sampling frequency: f=100Hz Conversion factors (cnt/m/s): SOE1: cms=4.81e9 SOE2: cms=7998040000 SOE3: cms=4.756e9 @4Vpp Trillium360 @4Vpp Trillium240

Part II summary:

- □ Reading and extracting seismic data with MatLab
- □ Reading and extracting seismic data with ObsPy (Python environment)
- **Exercitation with SOE2 (Sardinia site) data**
- Exercitation with Terziet (Meuse-Rhine site) data
- Exercitation with LNGS (underground laboratory) data
- Other proposed exercitations

Seismic data analysis with ObsPy

ObsPy provides an open-source Python framework for processing seismological data. The official tutorial is available at: <u>https://docs.obspy.org/tutorial/index.html</u>

For the purpose of this exercitation we will use Jupyter Notebook, that you should have installed along with Anaconda, the ObsPy environment and the additional packages indicated in the guide: https://drive.google.com/file/d/1LgzzPlwK52 rT btW1tw4Cem4RJch1e4/view?usp=sharing

From the prompt you can start a notebook typing "jupyter notebook"

(obspy) C:\Users\Luca>jupyter notebook [I 13:23:40.822 NotebookApp] Serving notebooks from local directory: C:\Users\Luca [I 13:23:40.822 NotebookApp] Jupyter Notebook 6.2.0 is running at: [I 13:23:40.822 NotebookApp] http://localhost:8888/?token=2dbe09e97fe038f44cbdf8cd475eee94cdaa130a4c92145e [I 13:23:40.822 NotebookApp] or http://127.0.0.1:8888/?token=2dbe09e97fe038f44cbdf8cd475eee94cdaa130a4c92145e [I 13:23:40.822 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [C 13:23:41.000 NotebookApp] To access the notebook, open this file in a browser: file:///C:/Users/Luca/AppData/Roaming/jupyter/runtime/nbserver-15248-open.html Or copy and paste one of these URLs: http://localhost:8888/?token=2dbe09e97fe038f44cbdf8cd475eee94cdaa130a4c92145e or http://127.0.0.1:8888/?token=2dbe09e97fe038f44cbdf8cd475eee94cdaa130a4c92145e

Seismic data analysis with ObsPy

You will redirected to your browser at the page <u>http://localhost:8888/tree</u> where you will find the directory and file tree. This is the default directory where your notebooks will be saved.

Home Page - Select or create a n 🗙 🕂	
→ C ① localhost:8888/tree	
💭 Jupyter	Quit Logout
Files Running Clusters	
Select items to perform actions on them.	Upload New - 2
	Name 🕹 Last Modified File size
C 3D Objects	2 mesi fa
Contacts	2 mesi fa
Desktop	2 mesi fa
Documents	2 mesi fa
🗋 🗅 Downloads	2 mesi fa
C Favorites	2 mesi fa
C Links	2 mesi fa
C Music	2 mesi fa
OneDrive	2 giorni fa
Pictures	2 mesi fa
C Saved Games	2 mesi fa
C Searches	2 mesi fa
🗋 🗅 Videos	2 mesi fa
LNGS - waveform _ Spectrum CLEAR.ipynb	un giorno fa 18.7 kB
LNGS - waveform _ Spectrum.ipynb	un giorno fa 1.64 MB
SENA - waveform _ Spectrum CLEAR.ipynb	un giorno fa 19.3 kB

Under Windows OS this is the folder: C:\Users*accont_name*

You can copy in this folder the notebooks provided for the exercitation. You can find the executed and the clear versions (the latter indicated as "CLEAR") to access data from 4 seismic stations.

Part II summary:

- □ Reading and extracting seismic data with MatLab
- □ Reading and extracting seismic data with ObsPy (Python environment)
- **Exercitation with SOE2 (Sardinia site) data**
- **Exercitation with Terziet (Meuse-Rhine site) data**
- Exercitation with LNGS (underground laboratory) data
- Other proposed exercitations

Seismic data analysis with ObsPy

ONLINE EXERCITATION

The Jupyter notebooks used in the exercitation are available here:

https://drive.google.com/drive/folders/1CYdLxIu0bubopZmM06VICGI2AAD6mQ2w?usp=sharing

Seismic data analysis with ObsPy

Proposed exercitations:

- Try to analyse data from different periods: check for seasonal effects;
- Try to analyse data from other locations in the seismic network. Evaluate the effect of the anthropic noise (1-10Hz) depending on the station location (proximity to, or distance from high population density zones)

here you find the several seismic networks: https://www.fdsn.org/networks/

e.g. the Italian network: <u>https://www.fdsn.org/networks/detail/IV/</u> the Netherlands network: <u>https://www.fdsn.org/networks/detail/NL</u>

Thanks for your attention!

Site Characterisation in Sardinia

BACKUP SLIDES

L. Naticchioni – GWADW21 – May 17th – 21st 2021

Credit: G. Saccorotti

SPatial AutoCorrelation - I

Under the hypothesis that the noise wavefield is **stochastic** and **stationary in time and space**, the relationship between spatial autocorrelation and phase velocity is:

$$C(f,r) = J_0 (2 \pi r f / c(f))$$

SPAC is derived at all the independent station pairs over the DC-25Hz frequency band.

Form the 1st zero-crossing, we derive c(f)

SPatial AutoCorrelation - II

Dispersion curves for individual CCs.

Red lines are the Bessel fits assuming dispersion follows a power law in the form:

c(f)=A f -*b*

L. Naticchioni – GWADW21 – May 17th – 21st 2021

Polarization Analysis - I

Recap: Seismometers record the 3 components (EW,NS,Up-Down) of ground motion.

Polarization Attributes are derived from the eigen-structure of the 3x3 covariance matrix evaluated over a given time frame.

The eigenstructure of the covariance matrix defines the axes of the polarization ellipsoid best fitting the 3C particle motion.

The amplitude of the **main eigenvalue** relative to the secondary ones defines the Degree of Polarization (or *rectilinearity*).

The eigenvector associated with the main eigenvalue defines the *polarization azimuth* (° from N) and *incidence angle* (° from the normal to the Earth's surface).

Polarization Analysis - II

Polarization Analysis is conducted over subsequent time frames sliding along the 3C recordings, with 50% overlap.

The analysis is repeated over 20, log-spaced frequencies spanning the 1-10 Hz frequency interval. For each frequency, the signal is band-pass filtered using a 2-poles Butterworth filter with a bandwidth of 0.5 Hz.

The length of the time window for covariance estimates is set equal to 4 times the period associated with the lower frequency corner of the filter (e.g., if fmin=2 Hz, wlen=2s).

Polarization results are then filtered according to an amplitude threshold T, given by:

 $T = mean(log_{10}(L))+std(log_{10}(L))$

where L is the largest eigenvalue of the covariance matrix.