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THIS 1S YOUR MACHINE LEARNING SYSTETM?

YUP! YOU POUR THE: DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSUERS ARE LIRONG? )

JUST STIR THE PILE DNTIL
THEY START LOOKING RIGHT.

https://xkcd.com/1838/
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What is Deep Learning about?

Intuitively, machine learning (and by extension deep learning) studies how to teach machines (agents) to solve tasks
with little to no human intervention by learning from interaction with the particular task (i.e. from data). The solution is
not prescribed by the practitioner, just the learning strategy (and encoding of the solution).

Deep Learning focuses on a particular family of parametric approaches that has been extremely successful recently.
This usually indicates a particular family of learning algorithms (typically gradient-based ones) and architectures
(neural networks).
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Intelligence* Learning Learning




Starting point: Supervised Learning

e Let X denote the space of input values
e Let ) denote the space of output values
e Given adataset D C X x ), find a function:

h:X—=Y

such that h(x) is a “good predictor” for the value of y.
e h is called a hypothesis
e Problems are categorized by the type of output domain
— If Y =R, this problem is called regression
— If V) is a categorical variable (i.e., part of a finite discrete set), the
problem is called classification

— In general, ) could be a lot more complex (graph, tree, etc), which is
called structured prediction



h: X —)Y
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A parameterized function is a function:

h:0xX —)Y

for example a linear function of the form

h(w,x) = wx

Learning then boils down to finding the best () to minimize the distance
between prediction and targets

arg min L(0) = arg min E [dist(h(0, z;), y;)]



We will focus on two questions:

What is a good parametrization ?

How do we find these optimal parameters ?




What is a good parametrization ?

The linear model h(w, x) = wx
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hlw, x) >0
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}&‘;\Q\ h(w, x) <0

Kal 7

e Can straightforwardly be
used for classification (and
regression)

e Defines linear decision
boundaries (and represents
linear functions)

This (intuitively) is not enough



What is a good parametrization ?

Most problems are not
linearly separable.

A[w, x) <0

x Y



Neural networks to the rescue!

h(X, 9) = WoutReLU(me + bzn) + bout

output layer
x x>0

ReLU(z) = { 0 otherwise

Afa{a’eh /a.yer

e Other non-linearities are possible
e Why have a non-linearity?

input layer




h(X, 0) = WoutRBLU(WZ'nX + bzn) + bout \ T

Zaslavsky theorem (1975): LZ

Note: proof is very R@ Rl

nice and visual :) r(Ap) = (TQrL) i,
Ly



Deep in deep learning:
h(x,0) = Wi ReLU(Wy_1ReLU(Wg_2... ReLU(W1x+b1)+...)+br_1)+by

The term deep learning or deep neural networks was
introduce to highlight the importance of depth. [ )

e What does depth provide? Why is it the secret
sauce?

—> —> —> —> 000 —>

,_,_,_,_
— J J U J




Wg’[i:]RGLU(Wlx 5 bl) + b2,[i] =0

Partitioning into
regions by second
hidden layer



Guido Montufar et al 2014, On the number of linear regions of Deep Neural
Networks

By folding the space, you gain expressivity!
(exponentially more linear regions)
without increasing the number of parameters!



https://arxiv.org/abs/1402.1869
https://arxiv.org/abs/1402.1869

Is having exponentially more linear regions a
good thing? Can this explain the success of
DL?

Is the limiting factor of previous methods
expressivity?

Do shallow model underperform because of
lack of capacity?
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Is having exponentially more linear regions a
good thing? Can this explain the success of

DL?

Is the limiting factor of previous methg

expressivity?

Do shallow model underpsg

lack of capacity?
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e Depth acts as an inductive bias (constraints the solution).
e Do we understand what this inductive bias is?

X-space

Pixel space

o'safifold 5, m%ifom q

Representation space

X

H-space

Sherijil Ozair & Yoshua Bengio 2014,
Deep Directed Generative Autoencoders

Linear interpolation in pixel space

Matt Zeiler & Rob Fergus 2013, Visualizing and Understanding 007
Convolutional Networks
“panda” noise “gibbon” lan J. Goodfellow et al
Honglak Lee et al. 2009, Convolutional Deep Belief Networks for Scalable 2014 Explaining and
57.7% confidence 993% confidence Harnessing Adversarial Examples

Unsupervised Learning of Hierarchical Representations


https://arxiv.org/pdf/1410.0630v1.pdf
https://arxiv.org/pdf/1410.0630v1.pdf
https://arxiv.org/pdf/1311.2901.pdf
https://arxiv.org/pdf/1311.2901.pdf
https://web.eecs.umich.edu/~honglak/icml09-ConvolutionalDeepBeliefNetworks.pdf
https://web.eecs.umich.edu/~honglak/icml09-ConvolutionalDeepBeliefNetworks.pdf
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572

How do we find the optimal parameters ?

arg min L(0) = arg mln O dist(h(0, x;), y;)]

0
O,bt/m:zatwu J \ [eaknmg/ Generalization
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Given L : R — R, ¢ RY

: N oL
arg min L(0 + Af) ~ arg min _L(H) + M%

s.t.]|AG|| < e



. oL
arg min [L(@) + AQ%]
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The celebrated Backpropagation Algorithm

OL
l oL 9t+1—9t—77%
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6— : e Why is it important to start from the
?J m output towards the input?

h e How is it different from the chain rule?
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The IID assumption in Gradient Descent
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Tom Schaul et al 2019, Ray interference: a
— source of Plateaus in Deep Reinforcement
8 Learning
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https://arxiv.org/abs/1904.11455
https://arxiv.org/abs/1904.11455
https://arxiv.org/abs/1904.11455
https://arxiv.org/abs/1312.6120
https://arxiv.org/abs/1312.6120

Learning has tug-of-war dynamics to resolve credit
assignment

This requires data to be LI.D.
e No explicit knowledge composition

e Failure in credit assignment leads to catastrophic
forgetting

Continual Learning studies credit assignment in
learning, and in particular the effects of this tug-of-war
dynamics.

Resolving continual learning means finding
better/different mechanism of doing credit
assignments. CL is about optimization/learning.

It has big implications for our understanding of the
learning process for neural networks.




Converging to an optimal !?

oL

9t+1 = 0; — 77%



https://www.cs.umd.edu mg/projects/landscapes,

https:/ml4a.qithub.io/ml4a/how_neural_networ
ks are trained/



https://ml4a.github.io/ml4a/how_neural_networks_are_trained/
https://ml4a.github.io/ml4a/how_neural_networks_are_trained/
https://www.cs.umd.edu/~tomg/projects/landscapes/

» Statistical physics (on random gaussian fields) [Bray and Dean, 2007,
Fyodorov and Williams, 2007]
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Dauphin et al, Identifying and
attacking the saddle point
problem in high-dimensional
nonconvex optimization. NIPS
2014

Jacot et al, Neural Tangent Kernel:
Convergence and Generalization in et al

Neural Networks

Loss Surfaces
Mode
Connectivity, and
Fast Ensembling
of DNNs, Garipov
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d
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The Deep Learning Myth:

Deep Networks can be inserted almost
anywhere and will just work
Optimization is as if the loss was convex.

Goodfellow, Vinyals & Saxe o
Qualitatively Characterizing
Neural Network Optimization . o i -
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http://arxiv.org/abs/1406.2572
http://arxiv.org/abs/1406.2572
http://arxiv.org/abs/1406.2572
http://arxiv.org/abs/1406.2572
http://arxiv.org/abs/1406.2572
https://papers.nips.cc/paper/8095-loss-surfaces-mode-connectivity-and-fast-ensembling-of-dnns.pdf
https://papers.nips.cc/paper/8095-loss-surfaces-mode-connectivity-and-fast-ensembling-of-dnns.pdf
https://papers.nips.cc/paper/8095-loss-surfaces-mode-connectivity-and-fast-ensembling-of-dnns.pdf
https://papers.nips.cc/paper/8095-loss-surfaces-mode-connectivity-and-fast-ensembling-of-dnns.pdf
https://papers.nips.cc/paper/8095-loss-surfaces-mode-connectivity-and-fast-ensembling-of-dnns.pdf
https://papers.nips.cc/paper/8095-loss-surfaces-mode-connectivity-and-fast-ensembling-of-dnns.pdf
https://arxiv.org/pdf/1412.6544.pdf
https://arxiv.org/pdf/1412.6544.pdf
https://arxiv.org/pdf/1412.6544.pdf
https://arxiv.org/pdf/1412.6544.pdf
https://proceedings.neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf

Combined 2D Local Loss Surface
of an MNIST Classifier °
5 Grzegorz Swirzcz, Wojciech Czarnecki, 3.0 :
e g o202 Razvan Pascanu, Local minima in trainin
neural networks, 2017 25
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Chaoyue Liu, Libin Zhu, Mikhail Belkin, Loss
landscapes and optimization in

over-parameterized non-linear systems and
neural networks

(c) (d)
https://arxiv.org/pdf/1406.2572.pdf



https://arxiv.org/abs/1912.07559
https://arxiv.org/abs/1912.07559
https://arxiv.org/abs/1912.07559
https://arxiv.org/abs/1912.07559
https://arxiv.org/abs/1611.06310
https://arxiv.org/abs/1611.06310
https://arxiv.org/abs/1611.06310
https://arxiv.org/pdf/2003.00307.pdf
https://arxiv.org/pdf/2003.00307.pdf
https://arxiv.org/pdf/2003.00307.pdf
https://arxiv.org/pdf/2003.00307.pdf
https://arxiv.org/pdf/1406.2572.pdf

@ e Itis always useful to step back, and don't think of your neural network as a
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Initialization (and gradient propagation)

100

50

Glorot and Bengio

function. Look at its structure, and at how gradients propagate.

Looking back at activations
e One can reason about
gradient propagation
(saturated regimes)
e Still an active area of research
(e.g. Gu et al. 2020)

‘ _‘l.aycrl ‘
Layer2|
A ~umil | AISTATS 2010
J [“Layer5

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Backpropagated gradients

He et al. ICCV 2015 adds a correction for RelLU.

1



http://proceedings.mlr.press/v119/gu20a.html
https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://arxiv.org/pdf/1502.01852v1.pdf

Stochastic GD vs Gradient descent: estimate true gradient by using a small subset of
datapoints.

Vi VS, b

i ~U[L,N] = Vf =~V SN v/,

Gradient Descent Stochastic Gradient Descent

~ A



0.0

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop

0.5 1.0

-1.0

o

https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-
descend-optimization-algorithm-4106a6702d39

Rmsprop / ~Adam

Vi=aVici+ (1 —a)Vf;

S = BS; 1+ (1 —B) (V)

Momentum

Vi=aVio14+ (1 —a)Vf;
Or = 0i—1 — ’)’Vt

Gradient descent

Gradient descent with momentum

Main idea:
Approximate curvature (cheaply).


https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-descend-optimization-algorithm-4106a6702d39
https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-descend-optimization-algorithm-4106a6702d39

Learning [ Generalization

Example: Data and best linear hypothesis
y = 1.60z 4+ 1.05




Order-2 fit

Is this a better fit to the data?



Order-9 fit

1

X

Is this a better fit to the data?



MNeural Net
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UNDERSTANDING DEEP LEARNING REQUIRES RE-

THINKING GENERALIZATION

Chiyuan Zhang* Samy Bengio Moritz Hardt
Massachusetts Institute of Technology Google Brain Google Brain
chiyuan@mit.edu bengio@google.com mrtz@google.com
Benjamin Recht Oriol Vinyals

University of California, Berkeley Google DeepMind

brecht@berkeley.edu
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e We want to be able to generalize

Use

Training set: data used for finding the right
parameters

Validation set: data used to estimate true loss on
unseen data

Errors

e —

Learning is about minimizing an Underfitting
intractable function via optimizing a e
tractable approximation of it

Good Model

Overfitting
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A

Priors/regularization terms and inductive biases provide mechanisms to introduce
knowledge in the learning problem
It restricts the search space for the parameters of the model
They can take various forms:
o Parametrization restricts the search space, making certain solutions
unrepresentable
o  Or it can make the loss surface such that certain solutions are easier to find given
initial conditions (e.g. what is the role of depth in deep learning)
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* under-fitting .

. Test risk

over-fitting

under-parameterized

Test risk

“classical”
regime

Risk

Training risk

sweet spot_ T —
P Ny

-~

S

Risk

Capacity of H

~ Training risk:

-
B ——

Capacity of H

Model cannot achieve zero
training loss

As capacity increases, the
best available solution is
increasingly complex

Initialization
plays a crucial

over-parameterized role

“modern”
interpolating regime

interpolation threshold

Multiple solutions with
zero training loss

Already many solutions available,
optimization selects the first
solution encountered

Exactly one solution with
zero training loss

Double descent curve from Reconciling modern machine learning practice and the bias-variance trade-off Belkin et al.

https://arxiv.org/abs/1812.11118



https://arxiv.org/abs/1812.11118

Implicit regularization of GD & SGD (helpful noise)

Gradient Descent Stochastic Gradient Descent

) Aofei)

Sharp minima

Flat minima

Hochreiter, Sepp and Schmidhuber, Jirgen. Flat minima. Neural
Computation, 9(1):1-42, 1997.

More recently (ICLR'17) arXiv:i1609.04836



We can change flatness (largest eigenvalue) without changing ¥
the function !

\¥e need a more robust measure of flatness
https://arxiv.org/pdf/1703.04933.pdf

Implicit bias of SGD / GD
https://arxiv.org/abs/2009.11162 = - =i 2 2
Csep(w) = C(w) + — Zk:o IVCr(w)]|*.

https://openreview.net/forum?id=rg_QrOclHyo Adm

Punch line: SGD optimizes a different objective than GD!

Not all noise is equal ! Augmentation multiplicity = 1 Augmentation multiplicity = 2
http:?://arxiv.or,q/abs/2105.13343 . o] | % EN W B" 2
(Noise from data augmentation hurts

generalization, while noise from data wlal v clo|— 4[4 8] B

sampling helps)

e We need Out-of-Distribution Generalization in order to solve tasks (not fit datasets). However
IMHO we need to define properly what we want as | believe there is a lot of confusion (and
misunderstanding) in this space. But is at the core of understanding what learning can do!


https://arxiv.org/pdf/1703.04933.pdf
https://arxiv.org/abs/2009.11162
https://openreview.net/forum?id=rq_Qr0c1Hyo
https://arxiv.org/abs/2105.13343

Summary

DL corresponds to a family of parametric models (neural networks) optimized by gradient
descent techniques

NN are typically layers of linear projects (sometimes with additional constraints) followed by
non-linearities

They operate in an over-parametrized regime more often than note

Magic sauce of DL is restricting the search in the learning process to get to solutions that
generalize. This is done by architecture design, choice of loss function and alterations of the
optimizer.



Taxonomy of Deep Learning
Architectures



]
Ie ,eefaurcef

e Abundance of resources online showing how to instantiate typical architectures using
pytorch / jax / tensorflow
e Some examples:

(@]

O

EEML practical sessions:
https://github.com/eemlcommunity/PracticalSessions2021

https://github.com/eemlcommunity/PracticalSessions2020

https://github.com/eemlcommunity/PracticalSessions2019

https://github.com/deepmind/educational

https://roberttlange.github.io/posts/2020/03/blog-post-10/



https://github.com/eemlcommunity/PracticalSessions2021
https://github.com/eemlcommunity/PracticalSessions2020
https://github.com/eemlcommunity/PracticalSessions2019
https://github.com/deepmind/educational
https://roberttlange.github.io/posts/2020/03/blog-post-10/

7& h(x,0) = W, ReLU(W ;,x + b;,,) + bous

output layer
MLP

Versatile and important/heavily used hidden layer

architecture
No structure for the data

Relies on the bias introduced by depth

input layer




MLP

A

lVAlAl
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Convolutional Network



Convolutional Neural Networks

Proboscis
monkey

African
hunting

dog

Siamese
cat




Convolutional Neural Networks

e Structural prior: spatial
neighbourhood defines the role of a
pixel

e Apply same function at all position

e Induces translation invariance as
features are computed independent
of position

Can an MLP reproduce a ConvNet?

Kerne|

https:/medium.com/apache-mxnet/1d-3d-convolution

s-explained-with-ms-excel-5f88c0f35941



https://medium.com/apache-mxnet/1d-3d-convolutions-explained-with-ms-excel-5f88c0f35941
https://medium.com/apache-mxnet/1d-3d-convolutions-explained-with-ms-excel-5f88c0f35941
https://www.analyticsindiamag.com/convolutional-neural-network-image-classification-overview/

Stefan Carlsson (KTH): https://arxiv.org/abs/1905.08922

Can an MLP reproduce a ConvNet?

e Yes, and you end up with circular matrices

(wl Wy e W 0 0 \
0 wy wy ... wp 0 0
0 0 wy we ... wr O 0
0 0 wp wo Wy
Wi 0 ... 0 w ws W —1
Wieq g 0w 0 wy wy W —2
\ wo wr 0 0 w )


https://arxiv.org/abs/1905.08922

Feature Feature Feature Classifier

Low-Level| Mid-Level| |High-Level Trainable
— —

e Pooling is not typically
used, but is a great tool to
reduce computation

e Large optimization space,
usually tuned on
ImageNet and relying on
intuition

e Bigger is better (though

e One typically stays close to an existing architecture: one hits diminishing

o AlexNet returns)

VGG

Inception

Resnet

NFNet

MobileNet

DenseNet

etc.

O O O O O O O



Resnets - powering computer vision )
34-layer residual

He et al. 2015
image
Conv 2
I
RelLU 2
I
BN 2
Batch normalized network v
BN, |  7x7conv,64,/2 |
‘IIIIIIIIII’IIIIIII‘ *
[l [ +
- & | :> pool, /2
E E Conv 1
= . | [ 3x3 convy, 64 I
ReLU 1 Y
. . 3x3 convy, 64
4EEEEEEEEEEEEEEERY l
BN 1
http://aradientscience.ora/batchnorm/ [ 3x3 cony, 64 l
| \ 4
loffe & Szegedy | 3x3conv, 64

https://arxiv.org/abs/1502.03167 —



https://arxiv.org/abs/1512.03385
http://gradientscience.org/batchnorm/
https://arxiv.org/abs/1502.03167

Initialization in Deep Learning

De & Smith: Batch Normalization Biases Deep Residual Networks Towards shallow paths https://arxiv.org/pdf/2002.10444.pdf
Stabilizing Transformer for RL: Parisotto et al. 2020

Batch normalized network
BN,

‘IIIIIIIIII’IIIIIII‘

D)

L] L]
n
X y: -z Lo |
u u
L] L]
W .
L] L]
L] L]
" N RelU
L} L]
L L]
| L
4EEEEEEEEEEEEEEER?
http://gradientscience.org/batchnorm/ A) B)

loffe & Szegedy
https://arxiv.org/abs/1502.03167



https://arxiv.org/pdf/2002.10444.pdf
https://arxiv.org/abs/1910.06764
http://gradientscience.org/batchnorm/
https://arxiv.org/abs/1502.03167

Reconciling modern machine learning practice and the bias-variance trade-off Belkin et al. o
https://arxiv.org/abs/1812.11118 30
Jonathan Frankle, Michael Carbin 2018, The lottery ticket hypothesis 25
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95 | :l === No pretrain: TRAIN On the difficulty of neural networks, 2017
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Berariu et al. 2020

Number of pretrain epochs


https://arxiv.org/abs/1611.06310
https://arxiv.org/abs/1611.06310
https://arxiv.org/abs/1611.06310
https://arxiv.org/abs/1812.11118
https://arxiv.org/search/cs?searchtype=author&query=Frankle%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Carbin%2C+M
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1910.08475
https://arxiv.org/abs/1910.08475
https://arxiv.org/abs/1910.08475
https://arxiv.org/abs/1910.08475
https://arxiv.org/abs/2106.00042

Convolutional Network

Recurrent Network



Recurrent Neural Networks

Yy Yea Y Yesa

X¢-1 Xt Xe+1

Pascanu et al. 2014



http://arxiv.org/abs/1312.6026

h; = fr(x¢, hy1)
Yt fo(ht)7

Pascanu et al. 2014



http://arxiv.org/abs/1312.6026

A Ye
Deep RNNs..
hea t hea he

DT-RNN DOT-RNN

Y

Stacked RNNs

DOT (s)-RNN



Exploding Gradients
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)? for h(t)

The error is

Classical view for:

error
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if ||g|| = threshold then




Vanishing Gradients
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Population

Logistic Map Bifurcation Diagram

052

o
3

0.48

Fixed pointattractor Limitcycle attractor Strange attractor

3.840 3.842 3.844 3.846 3.848 3.850 3.852 3.854 3.856

Growth Rate

e Weights largest eigenvalue < 1, damping regime [ fixed point attractor]
e Weights close or 1, information travels through the system
e Weights largest eigenvalue > 1, potentially in a chaotic regime

Echo State Network literature, e.g. : http://www.scholarpedia.org/article/Echo_state_network
IIya Sutskever et al 2013, On the importance of initialization and momentum in deep learning



http://www.scholarpedia.org/article/Echo_state_network
https://www.cs.toronto.edu/~fritz/absps/momentum.pdf

Saxe et al. 2014 :

e Orthogonal weights as solution for deep linear models
Henaff et al. 2016; Arjovski et al. 2016

e Reparametrize RNN so recurrent weights stays orthogonal

oC Ohgyq
Ohyy1 Ohy

‘|3hk+1

Pascanu et al. 2012

V2

But we do need to forget I?


https://arxiv.org/abs/1312.6120
https://arxiv.org/pdf/1602.06662.pdf
https://arxiv.org/pdf/1602.06662.pdf
http://arxiv.org/abs/1211.5063

0(x, + 2 + x3)

=1
8$3

1+ 290 + 23 = 10

I3 =7



iy = 0 (Weite + Whihe—1 + Weici—1 + bi) I \l/
fo =0 Wypzi+ Whhi—1 + Wepcr—1 + by)
¢y = frei—1 + i tanh (Wyexy + Whehi—1 + be)
ot = 0 (WeoTt + Whohi—1 + Weoct +b,)

hy = o tanh(c¢;)

—Vht

Hochreiter et al. 1997
Graves 2013

The gates dilate and contracts time, similar to
a low-pass filter in typical signal processing.


http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
http://arxiv.org/abs/1308.0850

Chung et al. 2015

L = O'(szt + Uzht_1) Z
r = U(Wrazt + Urht_l

)
h = tanh(Wrxy + Up(r o hy—1)) ‘@—).r/_) A <IN
ht:(l—z)Oht_l—FZOfL >OUT

(b) Gated Recurrent Unit



https://arxiv.org/pdf/1502.02367.pdf

External memory

E.g.

https://arxiv.org/abs/1410.3916

Turing machines:
/\ https://arxiv.org/abs/1410.5401

T Memory networks:

Can be extended towards

Complementary Learning Systems
(mix of non-parametric &
parametric models)



https://arxiv.org/abs/1410.3916
https://arxiv.org/abs/1410.5401

MLP

Convolutional Network

Graph Neural Networks

Recurrent Network



GraphNetworks
" Infinite use of finite means”

(a) Molecule (b) Mass-Spring System

o "." 1 Q)

(c n-body System (d) Rigid Body System

)
@
& AR 4BV

https://arxiv.org/pdf/1806.01261.pdf



https://arxiv.org/pdf/1806.01261.pdf

Decoding> e Allows for adding inductive bias in the
process through the structure of the
graph
e Fast growing field of research with still
many open questions

e Might provide a reliable connection to
Inferring classical Al (e.g. logic) and to algorithms
structure
Reasoning> E ! : x




Graph Net T

R S S —
ConvNet : T*T*T*T : QT /

e Similar to convnets consider your input divided into items (objects) -- pixels for CNN

e Define a neighborhood (which nodes are connected to which)
e The (new) state of the node is a function of its neighbourhood, but it should be order invariant

wrt to the elements in the neighborhood (by using commutative operations like summation)

e Attributes

P=Q® =5 © L?ib SR

(a) Edge update (b) Node update ) Global update



e Graph nets can be thought of in terms of RNN as well (unrolling over time)/
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Recurrent Network

aln Y Y

Graph Neural Networks and Attention



End-to-end translation systems (LSTM based):

Sutskever et al. 2014
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https://arxiv.org/pdf/1409.3215v3.pdf

Attention mechanism
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Bahdanau et al. 2015
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https://arxiv.org/pdf/1409.0473v7.pdf

N
14x14 Feature Map A
bird
flying
G over
Sy M
' body
g |
water
1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image Feature Extraction over the image word
generation)
o Baidu/ UCLA: Explain lmages with Mulimodal Kecurrent Neural Networks
o Toronto: Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models
o Berkeley: Long-term Recurrent Convolutional Networks for Visual Recognition and Description
o Google: Show and Tell: A Neural Image Caption Generator
o Stanford: Deep Visual-Semantic Alignments for Generating Image Description
o UML/UT: Translating Videos to Natural Language Using Deep Recurrent Neural Networks
o Microsoft/CMU: Learning a Recurrent Visual Representation for Image Caption Generation
o Microsoft: From Captions to Visual Concepts and Back

[ VRSe (Ji
A woman is throwing a frisbee in a park. A dog is standing on a hardwood Moor.

==
o :vt
Alittle girl sitting on a bed with A group of people sitting on a boat
a teddy bear. in the water.


http://arxiv.org/abs/1410.1090
http://arxiv.org/abs/1411.2539
http://arxiv.org/abs/1411.4389
http://arxiv.org/abs/1411.4555
http://cs.stanford.edu/people/karpathy/deepimagesent/
http://arxiv.org/abs/1412.4729
http://arxiv.org/abs/1411.5654
http://arxiv.org/abs/1411.4952

e Treatinputs as a set
e FEverytime you evaluate an item, attend
to all other elements e o o e o oo e o o o o o o

. .. 7S

Convolution Self-Attention

https://arxiv.org/abs/1706.03762

Self-attention (the core component of Transformer network)

Concat
Compute attention weights Normalize weights with row-wise softmax Compute weighted average of values T
Queries Keys Wy 2 ‘Weights Normalized Weights Weights Values Scaled Dot-Product h
(1 e00e0ee0e eeeeee o@eeeeo eo0e® S] oo olole o v Attention «]J'
e00000 (000000, [000OOG|>00O , @0 0000 i JUE 1

OOOOOOwV (Y XX X X (XXX X ) @ ©00|000 Linear P Linear P Linear
ececo0ee ‘ececoce eo00e o eoololeo —V’JLTJLV’J
000000 g 00 e e

Q QK" softmax(QKT)  softmax(QK7T) ©
K v V. K Q

https://arxiv.org/pdf/1806.01822.pdf


https://arxiv.org/pdf/1806.01822.pdf
https://arxiv.org/abs/1706.03762
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Graph Attention Nets (GATSs)
B = | 3 gl h DR

https://arxiv.org/abs/1710.10903

e Even if Transformers were not originally developed
as a GraphNet, GraphNets are a natural formalism

to describe transformers
e In this space, Transformers are close to GATs


https://arxiv.org/abs/1710.10903

Categorization of Machine Learning

Learning strategy /

Learning prot | ;
ea g protocols / Structure of the solution

Evaluation protocols /
Data

Linear Models
K | Method
(Self—Supervised) ( Supervised ) (erne etho s> ( )

Learning Learning

Reinforcement Graphical @ Neural Networks
( Learning Models / Deep Learning
Meta- Learnlng/

Continual Learnlng
Unsupervised C ) ( )
Learning

Splitting Machine Learning and positioning a set of
approaches within the field can be messy.




Many more topics | would have liked to bring up:

Meta / Continual / Transfer / Multi-objective Learning
Uncertainty

Different domains: language, vision, etc.

Different protocols: Unsupervised / Self-supervised
Optimization (trust region methods, natural gradient, etc.)
Non-parametric (and interaction with parametric)
Bayesian DL and probabilistic framework for ML
Compression/low-precision DL, sparsity



]
Ie ,eefaurcef

e Abundance of resources online showing how to instantiate typical architectures using
pytorch / jax / tensorflow
e Some examples:

(@]

O

EEML practical sessions:
https://github.com/eemlcommunity/PracticalSessions2021

https://github.com/eemlcommunity/PracticalSessions2020

https://github.com/eemlcommunity/PracticalSessions2019

https://github.com/deepmind/educational

https://roberttlange.github.io/posts/2020/03/blog-post-10/



https://github.com/eemlcommunity/PracticalSessions2021
https://github.com/eemlcommunity/PracticalSessions2020
https://github.com/eemlcommunity/PracticalSessions2019
https://github.com/deepmind/educational
https://roberttlange.github.io/posts/2020/03/blog-post-10/

THaNK YOU!



