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LISA NOISE AND SOURCES

Image: LISA White paper

- Massive Black Hole Binaries 
- Galactic Binaries 
- Extreme Mass Ratio Inspirals 
-  Stellar Origin Black Hole Binaries 
- …



Image credit:  
 SLAC  
National Accelerator Laboratory

MASSIVE BLACK HOLE BINARIES



Signals from MBHB mergers observed by LISA depend on  
    - assumptions regarding MBH formation, 
    - the recipes employed for the black hole mass growth via 
       merger and  
       gas accretion.

We consider two main scenarios for black hole formation 

- “light seed” scenario (≃102M⊙) 
     remnant of Population III stars formed in low metallicity environment at z ~15-20 

- “heavy seed” scenario (>=104M⊙)  
     direct collapse of protogalactic disk

MASSIVE BLACK HOLE BINARIES



MBHB POPULATION

heavy seed scenario with efficient formation of 
black hole seeds in a large fraction of high-redshift haloes 
-> hundreds a year 

1. seeds are light, and many coalescences do not fall into the LISA band, 
2. seeds are massive, but rare 
->tens a year

Massive Black Hole Binaries 
   — 10 to 100 sources / year 



MBHB SIGNAL

Example of a time series of the MBHB around coalescence

Image: LDC



GALACTIC BINARIES

Image credit:  NASA



GALACTIC BINARIES

Image: LDC

• Resolvable (~25000) and Confusion background (~107 all together)  
• Verification binaires 



EXTREME MASS RATIO INSPIRALS

Image:  Gillessen et al. (2009)



EXTREME MASS RATIO INSPIRALS

• Extreme mass ratio inspiral is produced by the compact object captured 
by MBH. The object gradually falls for the 104 - 106 cycles in the strong 
gravity. 

• The waveforms are determined by three characteristic frequencies: the 
orbital frequency, the perihelion precession frequency and the frequency 
of precession of the orbital plane 

• Usually have significant eccentricity 

Image: Drasco and Hughes (2006)



EXTREME MASS RATIO INSPIRALS

Astrophysical population model: 

• mass distribution 

• spin distribution 
typically close to the maximum limit of 0.98 

• EMRI rate per MBH 

• M-sigma relation 

• Properties of the compact object — typically black hole

From 1 to 10000 per year



NOISE ARTEFACTS

Can be modelled as Poisson distribution with  



LDC WITH MIXED SIGNALS: SANGRIA



SOURCE SEPARATION PROBLEM 



SIGNAL MIXTURE PROBLEMS ANALOGY

Gravitational wave signal measured by detector is 

where h is gravitational wave strain that is produced by each astrophysical object,

D is the response of the detector.

x(t) = D(n̂, f) : h(f, ⇠)



COCKTAIL PARTY PROBLEM

si(t)

xi(t)



BLIND SOURCE SEPARATION

   observe

want to recover

mixing coefficients

⇢
x1(t) = a11s1(t) + a12s2(t)
x2(t) = a21s1(t) + a22s2(t)

In general this is ill posed problem because we deal with underdetermined 
source separation problem.

We can generalise it as x = As



MISIC SEPARATION

Image: https://medium.com/swlh/music-genre-classification-part-1-4c48a1a246ca

https://medium.com/swlh/music-genre-classification-part-1-4c48a1a246ca


BLIND SOURCE SEPARATION

Traditional way to solve this problem was to find the independent components in the data.



COVARIENCE

Central moments — covariance matrix 

Zero covariance Negative covariance 

Cross-covariance matrix

Image: Aapo Hyvaerinen, Juha Karhunen, and Erkki Oja, Independent Component Analysis

Two vectors are uncorrelated if  

For one vector, similar condition,  
different components mutually uncorrelated: 

where



UNCORRELATEDNESS

Applying this rotation                                 to      will make components of     uncorrelated.

where      is an orthogonal matrix, i.e. 
rotation, having as its columns eigenvectors 
of covariance matrix. 
 
And                                          is diagonal 
matrix containing respective eigenvalues. 



x1

x2
PCA maps original data  
into a new coordinate system  
which maximises variance of the data

y1 =
nX

k=1

wk1xk

x1

x2

PRINCIPLE COMPONENT ANALYSIS



The mapping to the new basis can be  
expressed using the eigenvectors of the 
Covariance matrix 

C = E{xxT }
Eigenvalue decomposition

C = UDUT

x2

x1

PRINCIPLE COMPONENT ANALYSIS



y1
The vector of principle components 
will be

y = UTx

y2

PRINCIPLE COMPONENT ANALYSIS



DATA COMPRESSION WITH PCA

Data compression



y1
y2 y1

PRINCIPLE COMPONENT ANALYSIS

y01



STATISTICAL INDEPENDENCE
The random variable x is independent y,  
if knowing y does not give any additional information on x

<— joint density factorized into a product of marginal densities

Statistical independence is much stronger property than uncorrelatedness

Recall

which is equivalent to

If random variables are Gaussian, 
independence and uncorrelatedness 
become the same thing.



STATISTICAL INDEPENDENCE

For dependent variables

Bayes' rule

where the dominator is



INDEPENDENT COMPONENT ANALYSIS

We want to extract independent components by making assumption of 
their non-gaussianity 



PRINCIPLE COMPONENT ANALYSIS

It has been shown that it is possible to formulate PCA in terms of Neural Networks

x̂ = WWTx

JMSE =
1

T

TX

j=1

||x̂(j)�WWTx(j)||2



x x̂

h

W1,b1 W2,b2

y = W2h+ b2

PRINCIPLE COMPONENT ANALYSIS



AUTOENCODER

x

Input 
Layer

Output 
Layer

Hidden 
Layer

x̂

Autoencoders is unsupervised learning 
technique, which solves the task of 
representational learning.

Latent space

Learning is done by comparing 
reconstruction to original input.

L (x, x̂)



AUTOENCODER

Input 
Layer

Output 
Layer

Hidden 
Layer

x̂

Latent space

Variations: 
 - Denoising autoencoders 
 - Contractive auto encoders 
 - Undercomplete autoencoders 



Image: https://www.jeremyjordan.me/autoencoders/

LINEAR VS NONLINEAR DIMENSIONALITY REDUCTION



AUTOENCODER

Encoder Decoder

x x̂

h

h = f(x) x̂ = g(h)



VARIATIONAL AUTOENCODER

x x̂

Encoder Decoder

q�(z|x) p✓(x|z)

z

mean

variance

sample  
latent 
variable



Image: https://www.jeremyjordan.me/variational-autoencoders/

VARIATIONAL AUTOENCODER



p(z|x) = p(x|z)p(z)
p(x)

x

z

observe

<— we want to estimate the latent variables  
        given the data

p(x) =

Z
p(x|z)p(z)dz <— this is intractable= Ep(z) [p(x|z)]

VARIATIONAL AUTOENCODER



VARIATIONAL AUTOENCODER

x

z

observe

Lets approximate                      with  

such that we set a condition that they are close to each other  
as possible. 

p(z|x)

We can enforce this condition by minimising Kullback–Leibler divergence

q(z|x)



KL DIVERGENCE
Information

Entropy

KL - divergence

Mutual information can be 
measured as KL divergence

I = � log p(x)

H = �
X

p(x) log p(x)



VARIATIONAL AUTOENCODER

logp(x) = log

Z
p(x, z)dz

= log

Z
p(x, z)

q(z|x)
q(z|x)dz � Eq(z|x)log

p(x, z)

q(z|x) dz

= Eq(z|x)log
p(x|z)p(z)
q(z|x)

= Eq(z|x)logp(x|z) + Eq(z|x)log
p(z)

q(z|x)

= likelihood�DKL[q(z|x)||p(z)]

Introduce tractable q(z|x)

ELBO — evidence lower bound

Jensen inequality



VARIATIONAL AUTOENCODER

Better reconstruction 
Worse KL divergence

Better KL divergence 
Worse reconstruction



VARIATIONAL AUTOENCODER

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf


VARIATIONAL AUTOENCODER

Reparemeterization trick: used to propagate back the error

⇠ q(z|x)

⇠ N (0, 1)

z = µ+ � ⇤ ✏z z

µ � ✏� µ



 - VAE�
Introduce parameterisation into the learning criterion 

Better reconstruction 
Worse KL divergence

Better KL divergence 
Worse reconstruction

Which allows to control this:



DENOISING AUTOENCODER

Image: Static hand gesture recognition using stacked Denoising Sparse Autoencoders, Kumar, Nandi, Kala



SEMI-SUPERVISED LEARNING

Mixed 
sources

Probabilistic 
decoder

Separated  
sources

Sampled  
latent  

representation

Probabilistic 
encoder

Z

X X̂µ

�

Y

Ŷ

q�(z|x)

Real values 
of parameters

⇡ (y|x)

p✓(x|z, y)



MODERN APPROACHES TO SOURCE SEPARATION

Deep Learning allowed for a huge jump in the performance of the algorithms for source separation.

Typical architecture:

Image: Asteroid: the PyTorch-based audio source separation toolkit for researchers, Pariente et al 

Frameworks to that implement popular approaches 
and provide training datasets. For example, Asteroid.



FAST PARAMETER ESTIMATION







INFERENCE

We can estimate the posterior probability distribution of the parameters using Bayes’ theorem

Likelihood

Prior

Marginal likelihood

p(y|x) = p(x|y)p(y)
p(x)



The problem is that we have to compute marginal likelihood for the observation:

p(x) =

Z
p(x, z)dz

INFERENCE

That are the difference way to estimate marginal probability



It is not possible to perform exact inference for the general problem. 

We have to introduce some simplifications. 

INFERENCE



It is not possible to perform exact inference for the general problem. 

We have to introduce some simplifications. 

We can use approximate inference: 

- Sample from the exact posterior: MCMC or Nested sampling (slow) 

- Variational Inference: approximate the posterior distribution with a tractable distribution 

INFERENCE



It is not possible to perform exact inference for the general problem. 

We have to introduce some simplifications. 

We can use approximate inference: 

- Sample from the exact posterior: MCMC or Nested sampling (slow) 

- Variational Inference: approximate the posterior distribution with a tractable distribution 

There are some exceptions for the models with some simplifications: 

- Gaussian mixture models (Very simplified) 

- Invertible models

INFERENCE



INVERTIBLE TRANSFORM
If x is a continuous random variable with CDF f(x),  

then the random variable y = f( x )  has a uniform distribution on [0, 1]. 



c

INVERTIBLE TRANSFORM
If x is a continuous random variable with CDF f(x),  

then the random variable y = f( x )  has a uniform distribution on [0, 1]. 



INVERTIBLE TRANSFORM
The basic idea: 



INVERTIBLE TRANSFORM
The basic idea:  

1. we have a simple random generator;

For example: z ⇠ N (0, 1)

z ⇠ fZ(z)



INVERTIBLE TRANSFORM
The basic idea:  

1. we have a simple random generator; 

2. we want want to transform it to be able to sample from a more complex distribution expression for 

which we do not know; 

y ⇠ fY (y)

For example: z ⇠ N (0, 1)

z ⇠ fZ(z)



INVERTIBLE TRANSFORM
The basic idea:  

1. we have a simple random generator; 

2. we want want to transform it to be able to sample from a more complex distribution expression for 

which we do not know; 

3. we pass it through a bijective transformation to produce a more complex variable.

y ⇠ fY (y)

For example: 

z ⇠ fZ(z)

z ⇠ N (0, 1)

y = g(z)



CHANGE OF VARIABLE

dy

dz

fZ(z)dz = fY (y)dy

fY (y) = fZ(z)

����
dz

dy

����



CHANGE OF VARIABLE

fY (y) =
d

dy
FY (y)

=
d

dy
FZ(g

�1(y))

= fZ(g
�1(y))

����
d

dy
g�1(y)

����

Chain rule



CHANGE OF VARIABLE

fY (y) =
d

dy
FY (y)

=
d

dy
FZ(g

�1(y))

= fZ(g
�1(y))

����
d

dy
g�1(y)

����

Chain rule

Multidimensional case

fY (y) = fZ(g
�1(y))

����det
@g�1(y)

@y

����

g�1(y)



CHANGE OF VARIABLE

log[fY (y)] = log[fZ(g
�1(y))] + log

����det
@g�1(y)

@y

����

�

g�1(y)z ⇠ fZ(z)
y ⇠ fY (y)



1.           has to be a bijection

CHANGE OF VARIABLE

log[fY (y)] = log[fZ(g
�1(y))] + log

����det
@g�1(y)

@y

����

�

g�1(y)z ⇠ fZ(z)
y ⇠ fY (y)g(y)



1.           has to be a bijection 

2.           and                  have to be differentiable 

3.  Jacobian determinant has to be tractably inverted  

CHANGE OF VARIABLE

log[fY (y)] = log[fZ(g
�1(y))] + log

����det
@g�1(y)

@y

����

�

g�1(y)z ⇠ fZ(z)
y ⇠ fY (y)

g(y)

g(y)

g�1(y)



JACOBIAN

The calculation of determinant Jacobian will take 

We have to find a way to make it faster

Jg�1y =

2

664

@g�1
1

@z1
. . . @g�1

1
@zn

...
. . .

...
@g�1

n
@z1

. . . @g�1
n

@zn

3

775

O(n3)



SIMPLIFYING JACOBIAN



SIMPLIFYING JACOBIAN

Determinant of triangular matrix is a product of the elements on its diagonal



AFFINE TRANSFORMATIONS

⌧(zi;hi) = ↵izi + �i hi = {↵i,�i}

location-scale transformation:

Invertibility for ↵i 6= 0

log-Jacobian becomes

log|detJg�1(z)| =
NX

i=1

log|↵i|



COUPLING TRANSFORM

Split input into two parts:  z1 and z2

y1 y2

z1 z2

=
t

s

x

+

Forward propagation 

y1 y2

z1 z2

=

t

s

/

-

Inverse propagation 



REAL NVP

y1:d = z1:d
yd+1:D = zd+1:D · exp(s(z1:s)) + t(z1:d)

Coupling transform combined with affine transformation:

@y

@z
=

2

4
Id 0

@yd+1:D

@z1:d
diag(exp[s(z1:d)])

3

5

Jacobian of this transformation

What is functions t and s?



PARAMETERISATION WITH THE NN

�

 
b+

nX

i=1

wixi

!
= ŷ

x1

x2

xn

...
...

w1

w2

wn

X

b

ŷ

inputs weights bias

non-
linearity

output

Neuron 

The architecture can be any: 
- fully connected  
- residual network 
- convolutional network 
- …



COMPOSING FLOWS

z0 z1 zkzk�1. . .

z0 ⇠ fZ0(z0)

g1(z0) gk+1(zk)

y

Function composition

Jacobian composition

(g1 � g2)�1 = g�1
1 � g�1

2

det(J1 · J2) = det(J1) · det(J2)



FLOW 

github.com/papercup-open-source/
tutorials 



g�1(y)z ⇠ fZ(z)
y ⇠ fY (y)

SAMPLE GENERATION 



Data space Latent space

Sample generation

z ⇠ fZ(z)

y ⇠ fY (y)

z = g�1(y)

y = g(z)

SAMPLE GENERATION 

Laurent Dinh et al, Density estimation 
using realNVP



SPLINE NEURAL FLOW

Replace affine transform 
with tractable piecewise function. 
For example,  
Rational Quadratic Splines 

Conor Durkan et al, Neural Spline Flows



OPTIMISATION

The flow is trained by maximising the total log likelihood of the data 
with respect to the parameters of the transformation: 

logp(D|✓) =
NX

i=1

log[fY (yi|✓)]

✓ — parameters of the Neural Network with we use  
     to parameterise our transform



OPTIMISATION

log[fY (y)] = log[fZ(g
�1(y))] + log

����det
@g�1(y)

@y

����

�

The flow is trained by maximising the total log likelihood of the data 
with respect to the parameters of the transformation: 

logp(D|✓) =
NX

i=1

log[fY (yi|✓)]

Use change of variable equation:



CONDITIONING ON THE WAVEFORM

We do not have access to the samples form the posterior,  
as in the examples that we have just considered.

But we have access to the samples from the prior and the simulations of the data.



Condition map on the simulated data:

Samples from a prior of a physical parameter

Therefore we have access to the joint sample:

LIKELIHOOD FREE INFERENCE

y ⇠ fY (y)

x = h(y) + n

p(x,y) = p(x)p(x|y)



WAVEFORM EMBEDDING

• LISA observes signals in low frequency, therefor the waveforms are long. 

• Conditioning does not work well with the long waveform, have to find a way to reduce in. 

• It can be done, for example, by constructing new orthogonal basis  

which maximises variance in the space of the waveforms. 

• And using the coefficients of the projection of the waveforms to the new basis. 

• We implement it with Singular Value Decomposition.



WAVEFORM EMBEDDING



WAVEFORM EMBEDDING

Decompose a matrix constructed of the waveforms  

H = V⌃U
T

matrix composed of basis vectors

matrix composed of reconstruction coefficients

matrix containing the singular values



WAVEFORM EMBEDDING

Project the waveform onto the reduced basis in the following way:

v0↵µ =
1

�µ

NX

j=1

h↵juµj



Exercises: 

1. Separation of the signals on the toy 
spectrograms 

2. Simple implementation of the Real NVP flow 



RESULTS OF THE PARAMETER ESTIMATION

PRELIMINARY


