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Newtonian 
noise

before the 
subtraction 
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Newtonian 
noise

after the 
subtraction 
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Improving the low frequency band is 
very expensive: do we really need it?

New possible discoveries

BNS: Hours – Days 
Parameter estimation
EM early warning
Sky localization with 
only ET

Massive BBHs:
Higher redshiftPBHs?

Search of stochastic 
background

More stable 
interferometer!

~ 2 orders 
of 

magnitude
@ 10 Hz
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9SEISMIC NN

ATMOSPHERIC NN
Newtonian Noise (NN): 
Perturbation of the gravity 

field due to a variation in the 
density (δρ) of the 
surrounding media.

Adiabatic 
index
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Factor 10

Factor 3 
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● Excavating and removing material around the 
test masses (Recesses). 

● Metamaterials.

● Active noise cancellation.

How can we reduce the Newtonian Noise?



12

Recesses

Suppression factors 
between 2 and 4 
were obtained 
around 10 Hz with a 
recess 4 m deep and 
11 m width on each 
side of a test 
mass. 

J. Harms and S. Hild, Classical and Quantum Gravity31, 185011(2014), 
arXiv:1406.2253 [gr-qc]

Gravity perturbation of the 
test mass (normalized by its 
maximum value) at a specific 
frequency contributed by each 
point on the surface. 
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Metamaterials

Choudhury, B., & Jha, R. (2013). A Review of Metamaterial 
Invisibility Cloaks. Cmc-computers Materials & Continua, 33, 277-310.
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Inspired by physical concepts 
well established in wave 
propagation control, like 
phononic crystals (also called 
acoustic metamaterials).

The longitudinal resonances of 
trees couple with the vertical 
component of the Rayleigh wave 
and attenuate the surface ground 
motion by redirecting part of the 
elastic energy into the bulk.

Soil-embedded resonators: the 
seismic metabarrier can attenuate 
surface ground motion within the 
1–10 Hz range.

Metamaterials

A. Palermo, S. Krödel, A. r. Marzani, and C. Daraio, 
ScientificReports6, 39356 (2016).
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z

y

x

Wiener Filter

Newtonian 
Noise (NN) 
cancellation

Sensor array 

Active noise cancellation

● NN: it cannot be physically shielded

● We can perform an active noise cancellation

● Linear filter: Wiener filter (optimal filter)
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Wide stationary process

Wiener Filter is the way:
Assumptions:

● Stationary signal  
● Linear relationship
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stationary variance

stationary mean 
and 
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Wiener Filter is the way:
Assumptions:

● Stationary signal  
● Linear relationship

Linear relationship with the 
seismic displacement
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Wiener Filter is the way:
Assumptions:

● Stationary signal  
● Linear relationship

Estimated 
value of the 
Newtonian 

noise Wiener filter 
coefficients

Measured 
signal 
(seismic 

displacement)

Discrete time

Filter 
order 
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Wiener Filter is the way:
Assumptions:

● Stationary signal  
● Linear relationship

Estimated 
value of the 
Newtonian 

noise Wiener filter 
coefficients

Measured 
signal 
(seismic 

displacement)

Discrete time

GW data – Estimated NN
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Wiener filter to perform a NN 
cancellation (time domain):

Wiener filter performances 
(frequency domain):

REMEMBER!!!

Array 
optimization
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ith element of the vector containing all the 
cross power spectral densities of all the 
seismic sensors with the test mass 
(containing also the NN) 

Power Spectral Density of the target 
signal (test mass). It’s a scalar

ith element of the matrix containing all 
the cross power spectral densities 
between all the seismic sensors

Residual in 
frequency 
domain
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The residual will depend on the frequency, the number of sensors 
and on their positions:

In 2D we have 2N coordinates, where N is the number of the 
sensors.

Array optimization

  Subtraction pipeline
(applying wiener filter)

Array deployment

Update Wiener filter every 
hours: LINK

https://iopscience.iop.org/article/10.1088/1361-6382/ab5c43/meta
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Local 
minimum

Global 
minimum

Ackley function: an 
example of a non-convex 

function  example of a convex 
function

Global Optimization
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Applications:
Protein structure 

prediction 
(minimizing energy)

Safety engineering 
(provide acceptable 
levels of safety)

Molecular dynamics 
(initial optimization 
of the energy of the 

system to be 
simulated)

radiation 
therapy 
planning

...and much more!
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...like 
Newtonian 
Noise!!!

… or GW detector physics: LINK

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.122003
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Global Optimization

Deterministic Stochastic

You can have theoretical 
guarantees that the 

solution is indeed the 
global minimum

They involve randomness in 
the algorithm. They cannot 
 provides any guarantees 
if the minimum is actually 

the global one. 

Multiple runs

To escape local minima
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1)Basin Hopping
 

2)Differential Evolution 

3)Particle Swarm Optimization
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Basin Hopping

1) Perturbation
2) Local minimization
3) Acceptance/Rejection 

Metropolis criterion:
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Metropolis criterion:

nth step:

→ Residual_n

if: Residual_n < Residual_(n-1)
→ accept Residual_n

else:
if: e-(Residual_n – Residual_(n-1))/T >= rand:

→ accept Residual_n
else:

→ reject Residual_n

Higher T → larger jumps 
in the Residual will be 

accepted

Residual_n – Residual_(n-1)

rand

T → 0 => greedy algorithm
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Annealing: It involves heating a material above its recrystallization 
temperature, maintaining a suitable temperature for an appropriate amount of 

time and then cooling. 

In annealing, atoms migrate in the crystal lattice and the number of 
dislocations decreases, leading to a change in ductility and hardness. As the 

material cools it recrystallizes.

Curiosity fact:

Why T in
 e-(Residual_n – Residual_(n-1))/T ?

https://en.wikipedia.org/wiki/Annealing_(materials_science)
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Differential Evolution
Evolutionary algorithm. They  are inspired by the mechanisms of 

biological evolution: production, mutation, recombination and selection

Random starting population
(called first generation: it should cover the many 

possible points of the domain)

Mutation: 
i j3- )(+F= j2j1

Crossover:
In order to increase the diversity of the perturbed 

parameter vectors, crossover is introduced.

j = 1,…,D
D = dimensions of the individual (point 

in the D-dimensional domain)

F = mutation  
    parameter
CR = crossover   
     parameter

If rand_n°j >= CR → 
If rand_n°j <  CR → 

Generation G
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Selection:
To decide if   can be part of the 

generation G+1 we use a greedy criterion:

If Residual(  ) < Residual(  ) → we can keep it, 
otherwise it will rejected and   will be kept 

instead. 

i i

Generation G+1

...then the loop start again with G+1 and so on, for a 
defined number of steps (or it can stop before if it reaches 
some stopping criterion: |Residual_n – Residual_(n-1)| <= 

min_error).

Differential Evolution

i
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Particle Swarm
Not genes… but bird flocks

“Tra le rossastre nubi 

stormi d'uccelli neri, 

com'esuli pensieri, 

nel vespero migrar”.

G. Carducci, San Martino

“Between reddish clouds

black bird flocks, 

like exiled thoughts, 

in the eventide migrate”.

G. Carducci, San Martino



40

Particle Swarm

Curiosity fact: Particle swarm optimization arose in the context 
of simulating the ability of human society to improve its 
knowledge. 

Psychological assumption: 

1) individual behaviour:
individuals → follow the best beliefs in their experience. 

2) social behaviour:
individuals → also consider beliefs of others (if these are 
proved to be better than their own beliefs).
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Position of the ith bird (particle) at the 
nth step:

Pi
n = (x0,x1,…,xD)

and its velocity:

Vi
n = (v0,v1,…,vD)

The next position will be:

Pi
n+1 = P

i
n + V

i
n+1

Vi
n+1 = I Vi

n + C(Pi
best – P

i
n) + S(Pglobal

best – P
i
n)  

Inertia Individual 
behaviour 
(cognitive)

Social 
behaviour

each particle memorizes 
its best personal 

solution and the best 
global solution (as if 

they were able to 
communicate)
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Let’s go back to the optimization for 
the Newtonian noise:

Exercise
link

Don’t hesitate to contact me:
francesca.badaracco@uclouvain.be

https://colab.research.google.com/drive/1Y9utkDURJZJiwX1km4kGgAheN-7ezaIj?usp=sharing
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Let’s go back to the optimization for 
the Newtonian noise:

Isotropic and 
homogeneous 
seismic field 

for underground 
detectors.

All the 100 
optimizations 

For arrays with 
N = 6 

seismometers 
each. y

x

z

Underground 
case: we need 
to consider 
all the 3 
directions of 
the seismic 
displacement:
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Limited by P and S waves 
mixing:

Correlation of the seismometer 
in the origin with all the other 
points in a homogeneous and 
isotropic field.

Remember: 
P = compressional waves    
    (always generate NN)
S = shear waves (usually don’t   
    generate NN) 

Only P waves Mixed: P and S

Because of their
different propagation velocity in the ground, P and S waves 

produce two-point correlations
that are out of phase, thus affecting the configuration of 

the optimal array.
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The more, the better:
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We might misplace the sensors, 
then what…?
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What if the seismic field is not 
homogeneous and isotropic?
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We can use a model (next slide)

We treat it just as a unknown constant

This is easy: we just need to collect 
data!

Residual in 
frequency 
domain

What if the seismic field is not 
homogeneous and isotropic?
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What if the seismic field is not 
homogeneous and isotropic?

In the end, we only need to 
know this (and we can have it 

from data)
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Css(x1,y1, x2,y2) is a 4D function! 

4D

ρ2D = 0.30                                      

ρ4D = 0.05                                      

ρ4D_Regular_grid = 29

Curse of dimensionality:

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
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Css(x1,y1,x2,y2) = <(FFT*{s(x1,y1)(ω)} FFT{s(x2,y2)(ω)})>

ith seismometer’s data stream (1 hour, for example)

FFT1

FFT2

FFTN

FFTN-1

...

N segments with
50% overlapping

Gaussian 
Process
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FFT1

FFT2

FFT3

...

FFTN-1

FFTN

CONVOLUTION THEOREM

Css(x1,y1,x2,y2) = <(FFT*{s(x1,y1)(ω)} FFT{s(x2,y2)(ω)})>
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Every point of Css(x1,y1,x2,y2)in the 4D space is 
calculated as before → We can virtually sample as many 
values of Css(x1,y1,x2,y2) as we want, wherever we want.

Virtual Sampling + 
Linear interpolation:
we created a surrogate 
model of Css(x1,y1,x2,y2)

Css(x1,y1,x2,y2)
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1) FFT of 37 seismometers’ data (seismic displacement) → 
2D gaussian process at a frequency f0: Convolution theorem → 
surrogate model of Css:    

Css(x1,y1,x2,y2) = <(FFT*{s(x1,y1)(ω)} FFT{s(x2,y2)(ω)})> 

2)  Css Sampling → 4D Linear Interpolation on a Regular grid (faster) 
   → Css & Csn (integrated with Simpson method)
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10 Hz
15 Hz

20 Hz

10 seis

5 seis

2 seis

OPTIMIZED 
ARRAYS
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What is a Gaussian Process?

Statistic → 
Inferring models from data →

Interpretation 

Machine Learning → 
Learn algorithms to predict new data →

Black boxes

Gaussian Processes → 
mathematically equivalent to known models

+
Learn from data and can predict new values 

regr
essi

on

classification

Kriging
(geophysics)
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What is a Gaussian Process?
Gaussian process = a collection 
of random variables with a joint 
Gaussian distribution. 

Gaussian process over functions = 
the values taken by a function in
a point xi: f(xi) = fi are random 
variables.

x1,x2,…,xN → f1,f2,…,fN with a 
gaussian joint distribution with 
mean and covariance:

σf = signal variance, l = scale 
σ
ε
= noise variance 
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What is a Gaussian Process?
We can draw functions from a 
multivariate normal distribution:

GP regression takes the form of a 
Bayesian inference over a ”latent 
function”, f(x):

Functions f(x) sampled by a prior 
with fixed hyper-parameters: σf = 
1, l = 0 and σ

ε
= 0 and zero mean.

Gaussian 
distributed 

noise

σf = signal variance, l = scale 
σ
ε
= noise variance 
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What is a Gaussian Process?
We can draw functions from a 
multivariate normal distribution:

GP regression takes the form of a 
Bayesian inference over a ”latent 
function”, f(x):

Gaussian 
distributed 

noise

Functions f(x) sampled by a prior 
with fixed hyper-parameters: σf = 
1, l = 0 and σ

ε
= 0 and zero mean.

σf = signal variance, l = scale 
σ
ε
= noise variance 
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Prior for the 
distribution of values 

f(x):

Conditioning with 
observed data:

Predicted value in x*

Prior 
covariance Info that observation 

gives us about the 
function
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Posterior obtained from 
the conditioning of the 
prior over the white
data point. The white 
dashed curve represents 
µ∗(x∗) and the shaded 
area ±2σ∗(x∗).

The hyper-parameters 
were fixed: σf=1, l=0, 
σ
ε
=0.

Free noise signal
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Posterior obtained from 
the conditioning of the 
prior over the white
data point. The white 
dashed curve represents 
µ∗(x∗) and the shaded 
area ±2σ∗(x∗).

The hyper-parameters 
were fixed: σf=1, l=0 and 
σ
ε
=0.4

Noisy signal
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Which are the best 
hyper-parameters?

Parameters: they define the model and can be learned from the data (e.g. 
coefficients of a linear model or the weights in a neural network).

Hyper-parameters: they are external to the model and cannot be estimated 
from the data (like the learning rate for neural networks). However, 
they can be optimized in 2 ways:

Gaussian Processes are non-parametric models.

Fully Bayesian framework:

→ non-gaussian likelihood 
→ rely on Monte Carlo 

methods (computationally 
expensive)

Maximizing the log-likelihood:

Optimization + matrix 
inversion 

or
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Likelihood: given some parameters, the higer it is, the more likely it 
will be that we sample that observed data.

Data fit:
It decreases 

monotonically with the 
length scale (l) → less 
flexible model → worse 

fit 

Minus complexity 
penalty:

The simpler the 
model (big l scale) 

the bigger it 
becomes

N=number 
of 

training 
points

Likelihood: try to favour the least complex model able to explain the 
data (automatic Occam Razor). 
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Summary
● Newtonian noise (NN) affects the low frequency band of GW detectors

● We can reduce it with an active noise cancellation

● The Wiener filter can be employed to estimate the NN

● To maximize the noise estimation we need to find the optimized 
seismic array 

● We need a global optimizer (3 examples: PSO, DE, BH)

● When the seismic field is complicated, calculating the cost 
function for the optimizer is not an easy task

● We can make use of Gaussian Processes and the convolution theorem
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Let’s go back to the optimization for 
the Newtonian noise:

Exercise
link

Don’t hesitate to contact me:
francesca.badaracco@uclouvain.be

https://colab.research.google.com/drive/1Y9utkDURJZJiwX1km4kGgAheN-7ezaIj?usp=sharing
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Useful references:
● Newtonian Noise:

● Harms J., Terrestrial gravity fluctuations. Living Rev Relativ 22, 
6 (2019). LINK

● Badaracco, F., Newtonian noise studies in 2nd and 3^rd 
gravitational-wave interferometric detectors. LINK

● Bader M., Seismic and Newtonian noise modeling for Advanced Virgo 
and Einstein Telescope. LINK

● Stationarity:

● Shynk J., Probability, Random Variables, and Random Processes: 
Theory and Signal Processing Applications. John Wiley & Sons, 
2012. Section 6.5

https://doi.org/10.1007/lrr-2015-3
https://iris.gssi.it/handle/20.500.12571/16065
https://research.vu.nl/en/publications/seismic-and-newtonian-noise-modeling-for-advanced-virgo-and-einst
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● Wiener filter:

● Saeed V. Vaseghi, Advanced Digital Signal Processing and Noise 
Reduction. Third Edition, John Wiley & Sons, 2006. Chapter 6.

● Particle Swarm:

● Kennedy J. et al., Particle Swarm Optimization
● LINK

● Differential Evolution:

● Storn R. et al., Differential Evolution – A Simple and Efficient 
Heuristic for Global Optimization over Continuous Spaces, 1997.

● Basin Hopping:
● Wales D., et al., Global Optimization by Basin-Hopping and the 
Lowest Energy Structures of Lennard-Jones Clusters Containing up 
to 110 Atoms, 1997.

● Gaussian Processes:
● Rasmussen C, William C., Gaussian Processes for Machine Learning
LINK FREE BOOK

● LINK1 (notebook)
● LINK2 (visual exploration of GP)

https://towardsdatascience.com/particle-swarm-optimization-visually-explained-46289eeb2e14
http://www.gaussianprocess.org/gpml/
https://colab.research.google.com/github/krasserm/bayesian-machine-learning/blob/dev/gaussian-processes/gaussian_processes.ipynb#scrollTo=JdUZuGrcQa4w
https://distill.pub/2019/visual-exploration-gaussian-processes/
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If you survived awake 
until now: thank you 
for your attention, 

otherwise… I am sorry 
I made you sleep!  
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