



# **3G – CBC populations**

Salvatore Vitale MIT

PAX VI, EGO May 28 2019





#### Where do we go from here?

LIGO



## How many events?

- Using the rates calculated with O2 events and projecting...
- 3G detectors will detect
  - ~10^5 BBH per year (Regimbau+, PRL 118, 151105)
  - -~ 10^6 BNS per year (LVC, PRL 120, 091101)
- They will overlap in time, which leads to interesting challenges (Regimbau+, Arxiv: 1201.3563; Meacher+ Arxiv:1511.01592)

# Low/High frequency - Network size trade off

DCC G1900660 public



Better low-frequency

Better bucket

Better high-frequency



5/27/19

#### **BBH Source frame masses**

- Especially at large redshifts, having more than 2 sites is important to measure component masses
- Uncertainties of [few-10]% for z<3</li>
- Factor 1.5-2 better with 4 IFOs w.r.t. 2 IFOs



![](_page_5_Picture_0.jpeg)

### **BBH Extrinsic parameters**

- Precise distance and sky position:
  - EM (if luminous), isotropy, cosmology

![](_page_5_Figure_4.jpeg)

![](_page_6_Picture_0.jpeg)

## **BBH Extrinsic parameters**

- Precise distance and sky position:
  - EM (if luminous), isotropy, cosmology

![](_page_6_Figure_4.jpeg)

#### **BBH Spins**

**4GO** 

 Due to larger SNR and isotropic orbital orientation, 3G will get much better spin estimation than 2G
 Vitale & Evans PRD 95 064052

![](_page_7_Figure_2.jpeg)

![](_page_8_Picture_0.jpeg)

#### Golden BBH events

- A GW150914-like event will have SNR~2000 in a cosmic explorer facility.
- How well can we do?

![](_page_8_Figure_4.jpeg)

# Extrinsic parameters (2.5G+3G)

- Adding a Voyager significantly improves sky localization - factor ~100
- See Mills+ for BNS sky localization precision
- However with only 1 3G will rarely have localizations better than 1deg2
- Smaller improvement in distance estimation

![](_page_9_Figure_5.jpeg)

#### **Binary neutron stars - Localization**

- Will detect BNS at large redshifts
- A significant fraction of which can be localized to a few deg2
  - H0, dark energy EOS
    (Sathyaprakash+ Arxiv:
    0906.4151; Del Pozzo+
    Arxiv:1506.06590; many
    more)

![](_page_10_Figure_4.jpeg)

![](_page_11_Picture_0.jpeg)

## **BBH Formation channels**

- Many methods have been proposed to study the formation channels of BBH (and compact binaries in general)
  - Shown to work for advanced detectors in the local universe [Refs1]
- With 3G:
  - Study how the fraction of CBC from each channels evolve with redshift
  - Accessing thousands of BBH per year we can study the explosion mechanism of SNe (O'Shaughnessy+, PRL 119 011101 shows what can be learned with GW151226 alone)

![](_page_12_Picture_0.jpeg)

• Depending on relative abundances, might be able to distinguish populations and calculate branching ratios

![](_page_12_Figure_2.jpeg)

There might be more subpopulations (e.g. AGN disks, Bartos+ Nature Com, 8 831)

## Reality is always harder

- Considered a fraction of sources coming from galactic fields (as before)
- And the rest coming from globular clusters

- Madau-Dickinson template for the star-formation rate in galaxies
- Log-Normal for globular clusters (based on Carl Rodriguez' simulations.
- Measure characteristic parameters of each population, plus branching ratios between papulations.

![](_page_13_Figure_6.jpeg)

## But still...

- Considered a fraction of sources coming from galactic fields (as before)
- And the rest coming from globular clusters

- Madau-Dickinson template for the star-formation rate in galaxies
- Log-Normal for globular clusters (based on Carl Rodriguez' simulations.
- Measure characteristic parameters of each population, plus branching ratios between populations.

![](_page_14_Figure_6.jpeg)

### Time-delay distribution for BNS

#### Safarzadeh+, 1904.10976, press ApjL

![](_page_15_Figure_2.jpeg)

$$\dot{n}(z) = \int_{z_b=10}^{z_b=z} \lambda \frac{dP_m}{dt} (t - t_b - t_{\min}) \psi(z_b) \frac{dt}{dz}(z_b) dz_b$$
$$\frac{dP_m}{dt} \propto t^{\Gamma}$$

**LIGO** 

### Time-delay distribution for BNS

#### Safarzadeh+, 1904.10976, press ApjL

![](_page_16_Figure_2.jpeg)

**LIGO** 

# More from populations

- These are just examples of what can be done with large numbers of CBCs
- Others examples include
  - Cosmology

GO

- Measurement of mass and spin distributions
  - Do these vary with z? How?
- Features in the mass function
- Higher probability of getting rare events/outliers

#### Rare events

![](_page_18_Figure_1.jpeg)

- Together with populations, one gets rare events, showing peculiar properties
- However, those might not be super loud
  - Don't expect SNR of 1000s with eccentricity with spin precession with XYZ (replace with your secret dream)

![](_page_19_Picture_0.jpeg)

### Thanks!

#### References

- [Refs1]: Mandel+ CQG 27, 114007; Vitale+ CQG 34, 03LT01; Farr+ ApJ, 854, L9; Farr+ Nature, 548, 426; Stevenson+ MNRAS, 471, 280; Talbot +PRD, 96, 023012
- [Refs2]: Del Pozzo+ PRL 111 071110; Chatziionannou+ PRD 97 104036; Lackey+ PRD 91 043002; Read+ PRD 79 124032
- [Refs3]: LVC ApJL, 833, 1; Wysocki+ Arxiv: 1805.06442; Farr+, PRD 91, 023005; Gaebel+ Arxiv:1809.03815
- [Refs4]:Gossan+, PRD 85 124056; Berti+, Arxiv:1801.03587; Yang+ PRL 121, 071102; Vitale+, PRD 95 064052
- [Refs5]: Fishbach+, ApJ, 851, L25; Wysocki+ Arxiv: 1805.06442; Kovetz+, PRD 95, 103010; Talbot +PRD , 96, 023012;

CIO

# Low frequency – computational challenges

![](_page_21_Figure_1.jpeg)

Chirp mass (Msun)

- We would love to know how well CBC parameters can be measured in 3G. However...
- The duration of waveforms (and hence the computational time required) blows up
  - As flow decreases
  - As the chirp mass decreases
- With current methods, we cannot run parameter estimation codes on binary neutron stars for 3G

## Chirp mass extrapolation

#### SNR=32, CE

#### flow=10

![](_page_22_Figure_3.jpeg)

- Run actual PE (meaning MCMC, not Fisher matrix) for decreasing true chirp mass
- See if the results can be extrapolated to the BNS mass region
  - Sathya working on similar ideas

#### Whittle+, preliminary

# Lower-frequency extrapolation

#### Whittle+, preliminary

![](_page_23_Figure_2.jpeg)

- Run actual PE (meaning MCMC, not Fisher matrix) for decreasing lower frequency
- See if the results can be extrapolated to the BNS mass region
- Ongoing: 2D mass/flow extrapolation
- Caveat: don't have time dependent antenna patterns
  - Does anybody?

Salvatore Vitale

# LIGO

#### What gets better and what doesn't

![](_page_24_Figure_2.jpeg)

Whittle+, preliminary 5/28/19

### Memory effect

#### Lasky+, PRL 117, 061102

![](_page_25_Figure_2.jpeg)

- Very challenging to detect with advanced detectors
- Lasky+ showed that one might make a statistical detection given >>1 sources
  - Somewhat optimistic assumptions
- Yang+ focuses on 3G and quantifies SNR in the memory phase