Data Analysis Challenges
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(Attempted) Schedule

e ~40-50m ‘structured time’
— 1 ‘question’ or ‘open issue’ per panellist

— Write down spinoff topics, return to them in ...

e remainder : ‘unstructured time’

— will prioritize unsolved questions



Only one question:
Will we ever detect a CW signal?
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Only one question:
Will we ever detect a CW signal?

A) Expected Signal B) How can we
amplitudes vs detector improve analysis
sensitivity: where do we methods sensitivity?
stand?

C) Analysis methods robustness:
What if there are deviations from
the signal model? Noise impact?
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So, what can we do?
J Keep improving analysis pipelines (next questions)

1 Search for ‘new’ potentially interesting sources
(e.g. ultra-light bosons clouds around BHs)

[ Wait for better and better detector sensitivity

] Keep observing....



Stochastic background challenges

* The events we detect now are loud individual sources at close distances
(z~0.1-0.5 for BBHs and z~0.01 for the BNS).

 Many more sources at larger distances contribute to create a stochastic
background that dominates in the band of LIGO/Virgo.

* With 2G the goal is to detect this background. How do we separate the
different contributions BBH/BHNS/BNS or field/dynamical/primordial?

* With 3G the goal is to subtract it and observe the cosmological
background below.



Separate different contributions?
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Remove the CBC background

* Total background: Qtot = chc + Qastm + €

CcOosSmo

* 3G detectors will be able to resolve a large number of CBCs. If we
remove the estimated waveforms from the data:

Vo

_ resolved unresolved
Q —Q =AQ "+ AQ + Q)

tot cb astro COSmMo

* In the ideal case the foreground can potentially

be subtracted to the level Q =2x107"
(Regimbau et al., PhysRevLett.118.151105) M

* More realistically using Fisher matrix PE (S. Sachdev et al. in preparation)



Remove the CBC background

BBH: residual dominated by PE

uncertainty
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Guest appearance from audience:
S. Vitale



LIGO Low frequency —
computational challenges

e We would love to know
how well CBC parameters
can be measured in 3G.
However...

e Duration of waveforms (&
hence computational time
required) blows up

— Asf low decreases
— As chirp mass decreases

e With current methods we
cannot run parameter
Chirp mass (Msun) estimation codes on BNS

in 3G

—— flow=3Hz
— flow=10Hz

WF duration (s)
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Chirp mass extrapolation
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Run actual PE (MCMC
not Fisher matrix) for
decreasing true chirp
UERS

See if results can be
extrapolated to the BNS
mass region

— Sathya working on
similar ideas
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Run actual PE (MCMC,
not Fisher matrix) for
decreasing f low

See if results can be
extrapolated to the BNS
mass region

Ongoing : 2D mass/f _low
extrapolation

Caveat : don’t have time

dependent antenna
patterns

— Does anybody?
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Looooong sighals
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Data analysis challenges:

Sheer data volume - FFTs O(NlogN)
Template generation & memory
Template bank size (M.F. searches)

e Solved for search pipelines?
Amplitude and phase modulation from
Earth’s rotation

» Confusion with precession / subtle

phasing effects?
Chance of glitches during signal
approaches 100%

* Non-gaussian noise
Power spectrum changes during signal!

* Non-stationary noise



Chirp length (s)
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Chirp length, M.=18

1 year

1 montk

1 day

1 hot

Ur

10-3

102 10-1
fmin (HZ)

LISA analysis for binaries?

Simulation of LISA response is
computationally expensive (TDI 2)

Non-stationarity, non-gaussianity?
Overlapping signals (DWD + CBC + EMRI...)

How best to simulate multi-band analyses?



Computational cost: Solutions?

Multi-band / sparse sampling?
* Sub-Nyquist: Acceleration scales as f_max /f_min at best

* Super-Nyquist: aliasing, data compression schemes?

ROQ?

* Creating the basis is extremely expensive (asymptotic order NA2??)

* Number of bases increases like template bank density

* Compatibility with sky-dependent amplitude modulation?

GPU computing?

* One-off benefit. Needs to be ~*million times faster

Machine learning

* Possible, but how to train?

Vinciguerra+ 1703.02062
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Analysis Method Challenges

* Superimposed signals / glitches
e CLEAN: fit and subtract (then repeat)

* Global fit for multiple signals
* Computational cost issues with very long signals

* RIMCMC algorithm
e.g. Umstatter for WD binaries, Cornish/Littenberg BayesWave

* Other ideas? Viterbi / unmodelled as first step in hierarchical analysis

* Varying PSD over sighal timescale
* Time domain analysis?

e Can we compute optimal basis? (ROQ-like methods)
* Location-dependent?

e Knock-on impact on PE from differing PSD estimates?



Guest appearance #2 : Sathya / Early
Warning



Glitch detection / removal

Operational definition of glitch : Excess power that is
not coherent between detectors

For physically separated detectors, can spot glitches
individually & gate/subtract out

LIGO-Virgo binary neutrpn star inspiral range

— what is glitch ‘duty cycle’ ? = ot
— SOme days ShOW near im“WWWWW%WmewWWWMWM
continuous scattering EAd
over ~hours '
. 4 ; () llllll 1)11')’( v vllll(‘ltv o VIVT‘(lI((Vl vll(lv)lv .lv(‘:; VVVVVVV :

Co-located ifos may have partly coherent glltches?
ET-style null stream may not catch all glitches?



Only one question:
Will we ever detect a CW signal?

A) Expected Signal B) How can we
amplitudes vs detector improve analysis
sensitivity: where do we methods sensitivity?
stand?

C) Analysis methods robustness:
What if there are deviations from
the sighal model?
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Cannot do better than B) How can we
matched filter (ideally)

improve analysis

Increase available methods sensitivity?
computing power/code ‘L
efficiency
Restrict/optimize
Improve sensitivity of th parameter space
incoherent step in semi-
coherent analysis ‘l,
Where it is better to
With EM input spend our precious
(see MM session) computing power?




GPUs are a possibility we are considering.

Tests using the FrequencyHough Transform code
have shown a speed-up of 15-20 on a ‘good’” GPU

Still space for improvement

FrequencyHough per Hz computing time

— float32 time - == float32 FLOPS
— float64 time - == float64 FLOPS
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Code porting and
tests by luri La Rosa




Attempts to narrow down
GW parameter ranges using

EM observations [e.g.
Rowlinson+ 2013, Lasky+ 2017]
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An optimization scheme
for directed searches

has been presented in
Ming+ 1708.02173



In a semi-coherent search we typically select ‘peaks’
in a spectrograms, which are then processed

By increasing the probability of selecting signal peaks
we increase the overall sensitivity

Image processing techniques, eg based on 2D FT,
appear promising [Pierini+, in prep]
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C) Analysis methods robustness:
What if there are deviations from
the signal model? Noise impact?

L Robustness is crucial

] Different paths are being investigated

 Machine learning seems promising for long-
transient searches (duration of ~hours)

. Image processing + machine learning could be
promising for ‘standard’” CW searches



Detection efficiency for the search of long-transients with various
ML implementations and a ‘classical’ modeled search (Generalized

FrequencyHough) . .
Miller+, in prep
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[ Exploit signal features, e.g. sidereal modulation, to
discriminate among signals and noise

] Follow-up of candidates can be prone to even
small deviations from expected models: going
‘deeper’ can be dangerous

1 Robust methods, like those based on Viterbii
algorithm, have been implemented but are
somewhat limited in sensitivity



