

The lunar seismic environment

Gravitational wave detection at the Moon Workshop ^{14/10/2021} Pr Raphael F. Garcia

example individual A6 seismograms

Overview

- Gathering Apollo processed data (Body wave travel times, deep Moon quakes stacks, locations...)
- Review of internal structure models
 - Seismic attenuation and scattering models
 - Seismic velocity models
- Limitations induced by Apollo instrumentation and experiments
- Moon seismicity
- Seismic signals
- Moon Background seismic noise
- Conclusion

Apollo body wave travel times

- All published arrival times gathered and cross checked :
 - Outlayers detected on S wave arrival times due to picks in the late coda
 - Dispersion ~2s for P waves and ~3-4s for S waves and S-P times
 - Better quantify error propagation and outlayers for inversion

Apollo deep Moon quake stacks

- Deep moonquake stacks :
 - Performed independently by 3 different teams
 - Converted to same format, aligned by correlation and compared
- Good similarity between waveforms
 - Very high correlation coefficients for such long records
 - Differences mainly due to different number of individual records in the stacks

					Diss	ipation		
Reference	Freq. (Hz)	Freq. Dep.	Depth Range (km)	$D (km^2/s)$	Q_p	Q_s	Observable	Method
Latham et al. $(1970a)$	1	Yes	< 20	2.3-2.5		3600	Seismogram envelope	Diffusion theory
Latham et al. $(1970b)$	1	Yes	< 20			3000	Coda Decay	Diffusion theory?
Dainty et al. (1974)	0.45	Yes	< 25	8 ⊥?		5000	Seismogram Envelope	Diffusion Theory
	1		< 14	$ 0.9 \perp 0.4$		5000		
Dainty et al. (1976a)	1 - 10	No	0 - 500		5000			
			500 - 600		3500		Average P -wave	Inter-station
			600 - 950		1400		$\operatorname{amplitude}$	spectral ratio
			950 - 1200		1100			
Dainty et al. $(1976b)$	1 - 10	No	< 520		4800 ± 900		Average <i>P</i> -wave	Inter-station
		No	520 - 1000		1400 ± 300		amplitude	spectral ratio
Nakamura et al. (1976)	1 - 8	No	60 - 300		4000		Average <i>P</i> -wave	Inter-station
			300 - 800		1500		amplitude	spectral ratio
Nakamura (1976)	4			$2.6 \times 10^{-2}, 3.3 \times 10^{-2}$		1600 - 1700	Maximum amplitude	Diffusion theory
	5.6		< 2	$2.2 \times 10^{-2}, 2.8 \times 10^{-2}$		1900 - 2000	decay	for
	8			$1.8 \times 10^{-2}, 2.2 \times 10^{-2}$		2300	with distance	moving sources
Nakamura and Koyama (1982)	1	Yes	< 400		> 4000	4000 - 150000	Average P, S	Single + Inter-station
	8	$Q_s \propto f^{0.7 \pm 1}$			4000 - 8000	7000 - 15000	$\operatorname{amplitude}$	Spectral fitting
Simplified from	0.5	Yes	0 - 61	$1.9 \pm 0.5 - 8.5 \pm 3$		2500 ± 25		Diffusion theory
Gillet et al. (2017)			61 - 95	$16 \pm 3 - 21 \pm 5$		Id.	Rise time	
			95 - 113	270 ± 200		Id.	and coda Q of	
			113 - 147	$365 \pm 150 - 1000 \pm 600$		Id.	seismogram envelope	
			> 147	4585 ± 2000		Id.		

Limited frequency range

					D'			
	- ()			- (2, 2, ())	Diss	Ipation		
Reference	Freq. (Hz)	Freq. Dep.	Depth Range (km)	$D (km^2/s)$	Q_p	Q_s	Observable	Method
Latham et al. $(1970a)$	1	Yes	< 20	2.3-2.5		3600	Seismogram envelope	Diffusion theory
Latham et al. $(1970b)$	1	Yes	< 20			3000	Coda Decay	Diffusion theory?
Dainty et al. (1974)	0.45	Yes	< 25	8 ⊥?		5000	Seismogram Envelope	Diffusion Theory
	1		< 14	$ 0.9 \perp 0.4$		5000		
Dainty et al. (1976a)	1 - 10	No	0 - 500		5000			
			500 - 600		3500		Average P -wave	Inter-station
			600 - 950		1400		amplitude	spectral ratio
			950 - 1200		1100		-	_
Dainty et al. (1976b)	1 - 10	No	< 520		4800 ± 900		Average <i>P</i> -wave	Inter-station
		No	520 - 1000		1400 ± 300		amplitude	spectral ratio
Nakamura et al. (1976)	1 - 8	No	60 - 300		4000		Average <i>P</i> -wave	Inter-station
			300 - 800		1500		amplitude	spectral ratio
Nakamura (1976)	4			$2.6 \times 10^{-2}, 3.3 \times 10^{-2}$		1600 - 1700	Maximum amplitude	Diffusion theory
	5.6		< 2	$2.2 \times 10^{-2}, 2.8 \times 10^{-2}$		1900 - 2000	decay	for
	8			$1.8 \times 10^{-2}, 2.2 \times 10^{-2}$		2300	with distance	moving sources
Nakamura and Koyama (1982)	1	Yes	< 400		> 4000	4000 - 150000	Average P, S	Single + Inter-station
	8	$Q_s \propto f^{0.7 \pm 1}$			4000 - 8000	7000 - 15000	amplitude	Spectral fitting
Simplified from	0.5	Yes	0 - 61	$1.9 \pm 0.5 - 8.5 \pm 3$		2500 ± 25		Diffusion theory
Gillet et al. (2017)			61 - 95	$16 \pm 3 - 21 \pm 5$		Id.	Rise time	
			95 - 113	270 ± 200		Id.	and coda Q of	
			113 - 147	$365 \pm 150 - 1000 \pm 600$		Id.	seismogram envelope	
			> 147	4585 ± 2000		Id.		

Limited fre	quency	range	C	Intrinsic atte consistently al a	enuation bove 10 It all dep	quality fa 00 for all oths	actors studies	
					Diss	ipation		
Reference	Freq. (Hz)	Freq. Dep.	Depth Range (km)	$D (km^2/s)$	Q_p	Q_s	Observable	Method
Latham et al. (1970a)	1	Yes	< 20	2.3-2.5		3600	Seismogram envelope	Diffusion theory
Latham et al. $(1970b)$	1	Yes	< 20			3000	Coda Decay	Diffusion theory?
Dainty et al. (1974)	0.45	Yes	< 25	8 ⊥?		5000	Seismogram Envelope	Diffusion Theory
	1		< 14	$\parallel 0.9 \perp 0.4$		5000		
Dainty et al. $(1976a)$	1 - 10	No	0 - 500		5000			
			500 - 600		3500		Average P -wave	Inter-station
			600 - 950		1400		amplitude	spectral ratio
			950 - 1200		1100			
Dainty et al. $(1976b)$	1 - 10	No	< 520		4800 ± 900		Average <i>P</i> -wave	Inter-station
		No	520 - 1000		1400 ± 300		amplitude	spectral ratio
Nakamura et al. (1976)	1 - 8	No	60 - 300		4000		Average <i>P</i> -wave	Inter-station
			300 - 800		1500		amplitude	spectral ratio
Nakamura (1976)	4			$2.6 \times 10^{-2}, 3.3 \times 10^{-2}$		1600 - 1700	Maximum amplitude	Diffusion theory
	5.6		< 2	$2.2 \times 10^{-2}, 2.8 \times 10^{-2}$		1900 - 2000	decay	for
	8		100	$1.8 \times 10^{-2}, 2.2 \times 10^{-2}$	1000	2300	with distance	moving sources
Nakamura and Koyama (1982)	1	Yes $r^{0.7\pm1}$	< 400		> 4000	4000 - 150000	Average P, S	Single + Inter-station
	8	$Q_s \propto f^{0.7\pm 1}$	0.01		4000 - 8000	7000 - 15000	amplitude	Spectral fitting
Simplified from	0.5	Yes	0 - 61	$1.9 \pm 0.5 - 8.5 \pm 3$		2500 ± 25	D: (Diffusion theory
Gillet et al. (2017)			61 - 95	$16 \pm 3 - 21 \pm 5$		Id.	Rise time	
			95 - 113	270 ± 200		Id.	and coda Q of	
			113 - 147	$305 \pm 150 - 1000 \pm 600$		Id.	seismogram envelope	
			> 147	4585 ± 2000		1a.		
		·						

Limited fre	quency	range	C	Intrinsic atte onsistently at a	nuation bove 100 t all dep	quality fa D0 for all ths	actors studies	
						Γ	Different obse	ervables and
						I	analysis r	nethods
Beference	Freq. (Hz)	Freq. Dep.	Depth Bange (km)	$D (km^2/s)$	Diss Or	ipation Q_{2}	Observable	Method
Latham et al. (1970a)	1	Yes	< 20	2.3-2.5	~~ p	3600	Seismogram envelope	Diffusion theory
Latham et al. $(1970b)$	1	Yes	< 20			3000	Coda Decay	Diffusion theory?
Dainty et al. (1974)	$\begin{array}{c} 0.45 \\ 1 \end{array}$	Yes	< 25 < 14	$\ \ 8 \ \bot ? \\\ \ 0.9 \ \bot \ 0.4$		5000 5000	Seismogram Envelope	Diffusion Theory
Dainty et al. (1976a)	1 - 10	No	0 - 500 500 - 600 600 - 950 950 - 1200		5000 3500 1400 1100		Average <i>P</i> -wave amplitude	Inter-station spectral ratio
Dainty et al. $(1976b)$	1 - 10	No No	< 520 520 - 1000		4800 ± 900 1400 ± 300		Average <i>P</i> -wave amplitude	Inter-station spectral ratio
Nakamura et al. (1976)	1 - 8	No	60 - 300 300 - 800		4000 1500		Average <i>P</i> -wave amplitude	Inter-station spectral ratio
Nakamura (1976)	4 5.6 8		< 2	$\begin{array}{c} 2.6 \times 10^{-2}, \ 3.3 \times 10^{-2} \\ 2.2 \times 10^{-2}, \ 2.8 \times 10^{-2} \\ 1.8 \times 10^{-2}, \ 2.2 \times 10^{-2} \end{array}$		$\frac{1600 - 1700}{1900 - 2000}$ $\frac{2300}{2}$	Maximum amplitude decay with distance	Diffusion theory for moving sources
Nakamura and Koyama (1982)	1 8	$ \begin{array}{c} \text{Yes} \\ Q_s \propto f^{0.7 \pm 1} \end{array} $	< 400		> 4000 4000 - 8000	4000 - 150000 7000 - 15000	Average P, S amplitude	Single + Inter-station Spectral fitting
Simplified from Gillet et al. (2017)	0.5	Yes	$ \begin{array}{r} 0 - 61 \\ 61 - 95 \\ 95 - 113 \\ 113 - 147 \\ > 147 \end{array} $	$\begin{array}{c} 1.9 \pm 0.5 - 8.5 \pm 3 \\ 16 \pm 3 - 21 \pm 5 \\ 270 \pm 200 \\ 365 \pm 150 - 1000 \pm 600 \\ 4585 \pm 2000 \end{array}$		2500 ± 25 Id. Id. Id. Id. Id.	Rise time and coda Q of seismogram envelope	Diffusion theory
			,					

A priori assumptions on internal structure models

Model Nickname	TK74	NK83	KM02	LG03	BN06	WB11	GR11	KH14	MS15	Best estimate
Data / prior										
Body wave	P only	P+S	P+S	P+S+Smp	P+S+Smp	S only	P + S	None	P + S	ISSI team
travel times	KV73ab	$\operatorname{multiple}$	NK83	own+VK01	LG03+VK01	own	LG03		LG03	data set
Electromag. sounding	None	None	None	None	None	None	None	H83	None	
prior source locations	KV73ab	None	None	None	None	LG03	LG03	None	LG03	
Mass	None	None	None	None	None	None	7.3458	7.3463	7.34630	7.34630
$(\times 10^{22} \text{ kg})$								± 0.00088	± 0.00088	± 0.00088
I/MR^2	None	None	None	None	None	None	0.3932	0.393112	0.393112	0.393112
							± 0.0002	± 0.000012	± 0.000012	± 0.000012
k_2	None	None	None	None	None	None	0.0213	0.0232	0.02422	0.02277
							± 0.0025	± 0.00022	± 0.00022	± 0.00058
										(elastic)
h_2	None	None	None	None	None	None	0.039	None	None	0.048
							± 0.008			± 0.006
prior crust	None	None	None	None	None	LG03	LG03	None	None	unknown
seismic model										
prior crust	None	None	None	None	None	None	2.6-3.0	None	None	2.5-2.6
density										

A priori assumptions on internal structure models

Different seismic data sets

Model Nickname	TK74	NK83	KM02	LG03	BN06	WB11	GR11	KH14	MS15	Best estimate
Data / prior										
Body wave travel times Electromag.	P only KV73ab None	P+S multiple None	P+S NK83 None	P+S+Smp own+VK01 None	P+S+Smp LG03+VK01 None	S only own None	P + S LG03 None	None H83	P + S LG03 None	ISSI team data set
sounding										
prior source locations	KV73ab	None	None	None	None	LG03	LG03	None	LG03	
$\begin{array}{c} \text{Mass} \\ (\times 10^{22} \text{ kg}) \end{array}$	None	None	None	None	None	None	7.3458	7.3463 ± 0.00088	7.34630 ± 0.00088	7.34630 ± 0.00088
I/MR^2	None	None	None	None	None	None	$0.3932 \\ \pm 0.0002$	$\begin{array}{c} 0.393112 \\ \pm 0.000012 \end{array}$	$\begin{array}{c} 0.393112 \\ \pm 0.000012 \end{array}$	$\begin{array}{c} 0.393112 \\ \pm 0.000012 \end{array}$
k_2	None	None	None	None	None	None	$0.0213 \\ \pm 0.0025$	$0.0232 \\ \pm 0.00022$	$0.02422 \\ \pm 0.00022$	0.02277 ± 0.00058 (elastic)
h_2	None	None	None	None	None	None	$0.039 \\ \pm 0.008$	None	None	$0.048 \\ \pm 0.006$
prior crust seismic model	None	None	None	None	None	LG03	LG03	None	None	unknown
prior crust density	None	None	None	None	None	None	2.6-3.0	None	None	2.5-2.6

A priori assumptions on internal structure models

Different seismic data sets

Geodetic priors more and more used and precise due to GRAIL

Model Nickname	TK74	NK83	KM02	LG03	BN06	WB11	GR11	KH14	MS15	Best estimate
Data / prior							-			
Body wave travel times	P only KV73ab	P+S multiple	P+S NK83	P+S+Smp own+VK01	P+S+Smp LG03+VK01	S only own	P + S LG03	None	P + S LG03	ISSI team data set
Electromag.	None	None	None	None	None	None	None	H83	None	
sounding										
prior source locations	KV73ab	None	None	None	None	LG03	LG03	None	LG03	
$\begin{array}{c} \text{Mass} \\ (\times 10^{22} \text{ kg}) \end{array}$	None	None	None	None	None	None	7.3458	7.3463 ± 0.00088	7.34630 ± 0.00088	7.34630 ± 0.00088
I/MR^2	None	None	None	None	None	None	$\begin{array}{c} 0.3932 \\ \pm 0.0002 \end{array}$	$\begin{array}{c} 0.393112 \\ \pm 0.000012 \end{array}$	$\begin{array}{c} 0.393112 \\ \pm 0.000012 \end{array}$	$\begin{array}{c} 0.393112 \\ \pm 0.000012 \end{array}$
k_2	None	None	None	None	None	None	0.0213 ± 0.0025	0.0232 ± 0.00022	0.02422 ± 0.00022	0.02277 ± 0.00058 (elastic)
h_2	None	None	None	None	None	None	$0.039 \\ \pm 0.008$	None	None	$0.048 \\ \pm 0.006$
prior crust seismic model	None	None	None	None	None	LG03	LG03	None	None	unknown
prior crust density	None	None	None	None	None	None	2.6-3.0	None	None	2.5-2.6

No agreement on crustal thickness

Overall agreement on mid mantle average seismic velocities and density

Deep mantle and core size still debated Internal core structure?

Core radius cited

Regolit seismic properties properly determined from small scale networks

Larose et al.

(2005)

Zoom on crustal seismic

Regolit seismic properties properly determined from small scale networks

> thickness estimates in the range 30-50 km

Regolit seismic properties properly determined from small scale networks

> Recent crustal thickness estimates in the range 30-50 km

Difficulties of crust imaging:

=> Single detection of seismic

waves converted at Moho (Vinnik et al., 2001)

=> Gravity models are non-unique

=> Global estimates impacted by station distributions (on thin near side crust)

and lateral heterogeneities expected in the crust

Zoom on crustal seismic

Comparison of internal structure models Zoom on the core

- Same data set and a priori constraints (no event relocation)
- Different model parameterizations and inversion methods

Model	M1	M2	M3
name			
Data / prior			
Body wave	ISSI team	ISSI team	ISSI team
travel times	data set	data set	data set
			(prediction)
Electromag.	None	None	Table 6
sounding			
Geodetic	None	Table 5	Khan et al. (2014)
data			
prior source	ISSI team	ISSI team	ISSI team
locations	$\operatorname{compilation}$	$\operatorname{compilation}$	$\operatorname{compilation}$

M1 (M. Drilleau)= flexible seismic parameterization, only seismic travel time data

M2 (R.F. Garcia) = strongly constrained parameterization, seismic and geodetic data

M3 (A. Khan) = parameterization constrained by mineralogical modeling and conversion to seismic wave speed,

seismic and geodetic data fit with previous ensemble of models (no inversion)

- Data fit:
 - Data fit similar except travel times not inverted for M3

- Comparison of models (upper mantle):
 - M1 (blue) and M2 (green) suggest a low velocity layer at the top of the mantle (100-250 km depth)
 - => convert to thermal gradient of 1.7±0.4°C/km
 - => Possible effect of PKT thermal anomaly (~1.4°C/km from Laneuville et al., 2013)

- Comparison of models (lower mantle) :
 - M1 (blue) and M3 (red) present a strong P and S velocity decrease at the base of the mantle, but still not able to fit large distance S wave arrival times
 - M2 (green) has a similar data fit without this feature

- Comparison of models (core) :
 - No constraint on core radius without core interacting phases (except may be some core diffracted phases interpreted as P waves)
 - Similar core density for M2 and M3 (~4500 kg/m³) despite different mantle profiles and core radius

Apollo instrumentation and limitations

- Limitations induced by Apollo Seismic Experiments :
 - Coverage concerns only a small part of the Moon (near side)
 - Proper data storage but duration limited (stopped in 1977)

Nunn et al., SSR, 2020

Apollo instrumentation and limitations

- Limitations induced by Apollo instrumentation :
 - First A/D => signals on 11 bits
 - Bandwidth limited by "peaked mode" on ALSEP data (0.3-1.5 Hz) and up to
 - Noise level does not allow to reach the background seismic noise

Examples of Apollo seismometers Records Yamada et al., 2013

Apollo instrumentation and limitations

- Limitations induced by Apollo instrumentation :
 - First A/D => signals on 11 bits
 - Bandwidth limited by "peaked mode" on ALSEP data (0.3-1.5 Hz) and up to 8 Hz for Short period sensors
 - Noise level does not allow to reach the background seismic noise

Apollo seismometers Nunn et al., 2020

Apollo instrumentation and limitations

- Limitations induced by Apollo instrumentation :
 - First A/D => signals on 11 bits
 - Bandwidth limited by "peaked mode" on ALSEP data (0.3-1.5 Hz) and up to
 - Noise level does not allow to reach the background seismic noise

Noise levels of Apollo sensors And sensors planned for FSS Yamada et al., 2013

Moon seismicity

- Various types of seismic events :
 - Man-made impacts (Lunar module, Saturn V stage 4)
 - Natural impacts (more than 10 000 detected)
 - Shallow quakes (depth<50 km, magnitudes up to 4.5)
 - Deep Moonquakes

(900 km < depth < 1200 km)

Garcia et al. 2019

Moon seismic signals

- Particularities of the Moon seismic signals :
 - Due to very low attenuation, the Moon is ringing during hours after an event
 - However small seismic magnitudes or impacts excite mainly frequencies above 0.2 Hz

Examples of Apollo seismometers Records Nunn et al., 2020

Moon seismic signals

- Particularities of the Moon seismic signals :
 - Due to very low attenuation, the Moon is ringing during hours after an event
 - However small seismic magnitudes or impacts excite mainly frequencies above 0.2 Hz
 - Due to high scattering the seismic wavefield is fully diffuse. Waves
 propagate on paths longer than Moon radius, and are scattered mainly in
 the crust and upper mantle.

Scattering properties in the Moon Gillet, Margerin et al., 2017

Moon seismicity - Shallow events

- Events probably related to the contraction of the Moon
- Present large stress drops and depths < 100 km
- Make the Moon ringing on hours time scale

1987	Year	Day	Minimum Corner Frequency,	Seismic Moment,	Energy Release,	Stress Drop,	Body Wave Magnitude
			Hz	Nm	J	MPa	8
	1971	107	> 12	4.4×10 ¹⁴	> 9.2×10 ¹¹	> 100	> 5.5
		140	> 12	6.6×10 ¹³	> 2.1×10 ¹⁰	> 15	> 4.8
		192	> 8	5.2×10 ¹³	> 3.8×10 ⁹	> 3	> 4.5
	1972	2	> 10	2.3×10 ¹⁴	> 1.5×10 ¹¹	> 30	> 5.1
		261	> 10	1.1×10 ¹³	> 3.4×10 ⁸	> 1.5	> 4.0
		341	> 10	1.9×10 ¹³	> 1.0×10 ⁹	> 2.5	> 4.2
		344	> 8	1.2×10 ¹³	> 1.9×10 ⁸	> 1	> 3.9
	1973	39	> 8	5.5×10 ¹²	> 4.3×10 ⁷	> 0.5	> 3.7
		72	> 12	6.6×10 ¹⁴	> 2.1×10 ¹²	> 150	> 5.6
		171	> 12	1.3×10 ¹⁴	> 8.0×10 ¹⁰	> 30	> 5.0
		274	> 8	3.4×10 ¹³	> 1.6×10 ⁹	> 2	> 4.3
	1974	54	> 8	4.7×10 ¹²	> 3.1×10 ⁷	> 0.3	> 3.6
		86	> 8	1.5×10 ¹³	> 3.3×10 ⁸	> 1	> 4.0
		109	> 8	1.0×10 ¹³	> 1.5×10 ⁸	> 0.5	> 3.9
		149	> 8	6.3×10 ¹³	> 5.6×10 ⁹	> 4	> 4.6
		192	> 12	2.5×10 ¹⁴	> 3.0×10 ¹¹	> 55	> 5.3
	1975	3	> 10	1.6×10 ¹⁵	> 6.9×10 ¹²	> 210	> 5.8
		12	> 12	1.1×10 ¹⁴	> 5.8×10 ¹⁰	> 25	> 5.0
		13	> 12	1.0×10 ¹³	> 5.3×10 ⁸	> 2.5	> 4.1
		44	> 12	1.9×10 ¹³	> 1.8×10 ⁹	> 4	> 4.3
		127	> 10	2.9×10 ¹³	> 2.4×10 ⁹	> 4	> 4.4
		147	> 10	2.3×10 ¹³	> 1.5×10 ⁹	> 3	> 4.3
		314	> 12	4.8×10 ¹³	> 1.1×10 ¹⁰	> 10	> 4.7
	1976	4	> 10	4.2×10 ¹³	> 5.0×10 ⁹	> 5	> 4.5
		12	> 10	1.1×10 ¹⁴	> 3.6×10 ¹⁰	> 15	> 4.9
		66	> 10	3.0×10 ¹⁴	> 2.6×10 ¹¹	> 40	> 5.3
		68	> 12	5.6×10 ¹³	> 1.5×10 ¹⁰	> 13	> 4.7
		137		1.3×10 ¹³			

Moon seismicity - Deep Moonquakes

- Repeating in clusters at a given same position (at km scale)
- Repeating with a period linked to the Earth's tidal forces
- Very low magnitude

а

Numbers

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

11.0

Α7

A42 – - - A42 – - - A51

11.5

A15

-A18

· 🗗 · · A20

- <u>A</u> A33

1977

Moon seismicity - Natural impacts

• High number of impacts detected

Examples of impact records from Lognonné and Kawamura 2015

Moon seismic background noise : impacts

- Global seismic background noise is thought to be dominated by micro-meteorite impacts
- Estimates of global seismic background Noise by Lognonné et al. (2009)

Figure 15. Composite waveform for impacts simulated using the Brown model. The duration of each waveform (corresponding to an individual impact) summed is 1 h, while the plot shows 10 days of signal. (left) The computed seismogram in Apollo DU. (right) The absolute value of the seismogram, on a logarithmic scale.

Moon seismic background noise : thermal cracks

• Local seismic background noise is dominated by thermal cracks occuring mainly during the cooling phase

Observed background noise variations from Apollo geophones (1-10 Hz range)

Figure 14. (top) Variation of Rayleigh wave amplitude (solid) and the statistics of thermal moonquakes [*Duennebier*, 1976]. Both data peak at sunset. (bottom) Surface temperature for the diurnal cycle.

Sens-schonfelder and Larose, 2010

Figure 3 Envelopes of the continuous seismic records of the four geophones in the Apollo 17 short period network. Scale is in digital units of the raw traces. Shaded background indicates lunar night. Note the difference between the geophones in the morning and the high similarity during afternoon and night of the lunation.

Conclusions

- Internal structure of the Moon and seismicity are quite well constrained by Apollo data
- But...
 - Deep mantle and core still debated
 - Farside seismicity remains mainly unknown
 - Seismic signals below 0.2 Hz not quantified
 - Seismic background noise is not measured except for local thermal cracks above 1 Hz
- However new seismic deployments are planned
 - Farside Seismic Suite and Lunar Geophysical Network by NASA
 - Chang'e 7 will include a seismometer
 - Various projects on ESA side but still in phase zero
- And new seismic instruments are currently developed by PIONEERS EC project (https://h2020-pioneers.eu/)

BACK-UP SLIDES

Review of a priori constraints on Moon internal structure

- In orbit imaging of seismic sources and receivers
- Geodetic constraints :
 - Crust density is critical for the Mass, MoI budget and thickness variations can be used to correct
 - Modeling error is dominating elastic k2 estimates
- HP/HT mineralogy experiments:
 - · Constraint range of parameters for the core

Conclusions

- Work done by the team :
 - New processed seismological data set for the Moon
 - Review of various a priori constraints
 - New models of Moon interior => upper mantle low velocity zone
 - Contributions to the debate on lower mantle structure
 - Low level requirements for future seismological deployments
- What's next?:
 - Include event relocation, redo search of core reflected phases
 - Need new deployments of broad band sensors far from Apollo network

FRAME 1

• Happy New Planetary Seismology! (every 40 years)

Debate on melt at the base of the mantle (1/2)

- Different seismological structure at the base of mantle (for sure) :
 - P wave arrivals are slightly delays
 - S wave arrivals present large delays but cannot be fit by models (outlayers)
 - Love numbers require a more soft layer at the base of the mantle
- Melt or no melt ?

Pros Melt	Cons Melt
Very low S wave velocities due to delayed large distance S waves	Lack of data fit demonstrate that these data are outlayers
Love numbers require a soft material at the base of the mantle	Rheological models without melt can explain the data (Nimmo et al., 2012)
No clear S wave arrivals at large distances implies a strong attenuation at the base of the mantle	A decrease of S wave velocities at mantle base generates a shadow zone for S wave above the core Or S diffracted waves have low amplitude

Debate on melt at the base of the mantle (2/2)

- About S wave velocity structure and S wave amplitude at large distance : 2 different models with similar effects
 - Low S wave velocities generate a shadow zone for S waves
 - A large core generate diffracted S waves which amplitude is decreasing quickly with distance

What's next for the seismological constraints on the Moon core?

- With the current data set:
 - Large variability of crust and mantle models induces large error on core radius even if core reflected phases are detected
 - Whole Moon scattered waves should sample deep Moon structure => core shadow effect on coda waves?

What's next for the seismological constraints on the Moon core?

• With the current data set:

- Large variability of crust and mantle models induces large error on core radius even if core reflected phases are detected
- Whole Moon scattered waves should sample deep Moon structure => core shadow effect on coda waves?
- With next seismic sensor deployments:
 - Same deep Moonquakes being active => virtually add a station to ALSEP
 - Best geometry for a station far from Apollo network (SPA or far side) (Yamada et al., 2011)

What's next for the seismological constraints on the Moon core?

• With the current data set:

- Large variability of crust and mantle models induces large error on core radius even if core reflected phases are detected
- Whole Moon scattered waves should sample deep Moon structure => core shadow effect on coda waves?
- With next seismic sensor deployments:
 - Same deep Moonquakes being active => virtually add a station to ALSEP
 - Best geometry for a station far from Apollo network (SPA or far side) (Yamada et al., 2011)

Adding a far side station

Recommendations and requirements for future missions

- Requirements to ensure inter-operability of future deployments :
 - Low level requirements flow down (scientific \rightarrow station \rightarrow instrument)
 - More at <u>http://www.issibern.ch/teams/internstructmoon</u>

L0 and L1 requirements

OBJECTIVE

ILN-REQ-0 Interoperability of Data from geophysical stations deployed on the Moon must allow an international community of Stations for researchers to locate events, perform waveform analysis and develop structural models. Network Analysis

SCIENTIFIC AIMS

ILN-REQ-0	ILN-REQ-0.1	Source Timing	The origin time of geophysical events detected by the seismic network must be recovered with an accuracy better than the sampling rate of the recording stations.
ILN-REQ-0	ILN-REQ-0.2	Source Location	The source location of geophysical events detected by the network must be recovered with an accuracy better than a quarter of the wavelength of the signals used to locate the source.
ILN-REQ-0	ILN-REQ-0.3	Source Energy	The energy of the source of geophysical events detected by the network must be recovered with an accuracy better than 20%.
ILN-REQ-0	ILN-REQ-0.4	Source Radiation	The radiation pattern of the geophysical sources detected by the network must be recovered with an accuracy better than 10° .
ILN-REQ-0	ILN-REQ-0.5	Data Access	Proper recording and archiving of all data and metadata is necessary to allow scientific analysis by an international community of researchers.
		STATION REQUIR	REMENTS
ILN-REQ-0.1	ILN-REQ-1.1	Source timing: back propagated error level = X*dt	Time synchronization between stations must be provided with an accuracy that ensures that timing errors for the geophysical signals are smaller than the sampling rate of the sensor.
ILN-REQ-0.2	ILN-REQ-1.2	Source location: back propagated error level = X * max wavelength	Station information must be provided with an accuracy that ensures that the errors on the location of the source of geophysical signals are smaller than a quarter of a wavelength of the signal used for finding the location.
ILN-REQ-0.3	ILN-REQ-1.3	Source energy = X%	Characteristics of instruments deployed by the station must be provided with an accuracy ensuring that the errors on the estimate of the source energy are smaller than 20%.
ILN-REQ-0.4	ILN-REQ-1.4	Source radiation = X°	The orientation of the instruments must be provided with a precision ensuring that the errors on the estimate of the source radiation are smaller than 10° .
ILN-REQ-0.5	ILN-REQ-1.5	Data archiving and documentation	Data content, documentation, storage and archiving must ensure that an international community of researchers are able to understand these data and to implement research activities.

L2 requirements

INSTRUMENT REQUIREMENTS

N-REQ-1.1; N-REQ-1.2	ILN-REQ-2.1	Time Stamp/Time Accuracy and Precision	Accuracy on the dating of the samples must be better than one tenth of the average sampling rate of the data channel.
N-REQ-1.1; N-REQ-1.2	ILN-REQ-2.2	Time Reference	Data samples must be provided in Coordinated Universal Time (UTC Time).
<u>N-REQ</u> -1.5	ILN-REQ-2.3	Sampling Rate	For a given data channel, data acquisition should be designed to be performed at constant sampling rate in the time reference of the instrument.
N-REQ-1.5	ILN-REQ-2.4	Format	Data and metadata must be provided in a format prescribed by the International Federation of Digital Seismograph Networks (FDSN) for the exchange of seismic data.
N-REQ-1.6	ILN-REQ-2.5	Units	Data must be provided in units of the international reference system (SI units).
N-REQ-1.3; N-REQ-1.5	ILN-REQ-2.6	Calibration Information	The amplitude of the instrument response must be provided with an accuracy better than 10% over the <u>bandpass</u> of the instrument during the entire lifetime of the instrument.
N-REQ-1.3; N-REQ-1.5	ILN-REQ-2.7	Calibration Information	The phase of the instrument response must be provided with an accuracy better than 10° over the <u>bandpass</u> of the instrument during the entire lifetime of the instrument.
N-REQ-1.5	ILN-REQ-2.8	Metadata and processing	Metadata must contain a description of all the processing steps from the physical unit to the digital (count) output of all data channels.
N-REQ-1.3; N-REQ-1.5	ILN-REQ-2.9	Compression/ Decompression	If lossy compression is applied, it should allow signal reconstruction with an accuracy better than 10% of the signal energy.
N-REQ-1.3; N-REQ-1.5	ILN-REQ-2.10	Aliasing	The instrument must be designed so that less than 0.1% of the signal above the <u>Nyquist</u> frequency is aliased in the <u>bandpass</u> of the instrument.
N-REQ-1.5	ILN-REQ-2.11	Noise Estimates	Sensor and instrument noise must be estimated over the bandpass of the instrument and provided for each seismic channel in $m/s^2/\sqrt(Hz)$.
N-REQ-1.5	ILN-REQ-2.12	Archiving	Data and metadata for all the instrument channels must be archived both in planetary databases and in geophysical sensor databases.
<u>N-REQ</u> -1.5	ILN-REQ-2.13	Naming	A network code and a station code must be assigned to the geophysical station by the International Federation of Digital Seismograph Networks (FDSN).
N-REQ-1.2; N-REQ-1.5	ILN-REQ-2.14	Station Location	The station location must be provided in a standard reference system defined by the International Astronomical Union (IAU).
<u>N-REQ</u> -1.2	ILN-REQ-2.15	Station Location	The station location coordinates must be provided with an accuracy better than 25 m.
<u>N-REQ</u> -1.4	ILN-REQ-2.16	Axis Orientation	The sensing direction of the instrument data channels must be provided with an accuracy better than 10°.
N-REQ-1.5	ILN-REQ-2.17	Operations	Mission, platform and instrument operation activities impacting the signals above instrument noise level must be time-stamped, recorded and archived in the metadata for the instrument.

- Body wave arrival times are the main constraints on seismic structure AND seismicity
- Evaluation of their error bars is critical to known error on seismic model

Beyneix, et al. (2006)

- Body wave arrival times are the main constraints on seismic structure AND seismicity
- Evaluation of their error bars is critical to known error on seismic model No deep S waves at large

600

distances 600

 P and S arrival times present a poisson statistics (relative to median) with a dispersion < 2s

- P and S arrival times present a poisson statistics (relative to median) with a dispersion < 2s
- Outlayers on S wave arrivals due to arrivals in coda

Comparison of deep moonguake stacks

European Lunar

- Deep Moon quakes repeat on the same fault, but we should stacks these events to increase S/N ratio
- Performed by 3 different teams with different input data, different processings : Nakamura, Lognonné/Beyneix, Bulow(Weber)
- But:
 - Not available for comparison
 - Used to infer Moon core and deep mantle
- Validation is needed

312Z	3.0000+00		الكروا الاخترابية التجانب المتعاد مواسط ومعاد
S12Z	3.000e+00		
S12Z	6.500e+00		
S12Z	2.000e+00	uninder milden sinder som som som som	
S12Z	3.500e+00		
S12Z	5.000e+00		
S12Z	3.500e+00		
S12Z	2.000e+00		
S12Z	2.500e+00		
S12Z	1.500e+00		
S12Z	1.500e+00	<u></u>	
Minute			5
0.1		-	
Science Forum		2018	ISAE-SUPAER

F	Raw	data S12 event cluster	
S12Z	40000-00	[┪] ┲┯ ╴┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍┍ ┍┍┍┍┍┍┍┍┍	
S12 7 -			n electron
S12Z	4.500e+00		
S12Z	1.4009+01		i dijed
S12Z	1.000e+01		e-Multiple
S12Z	1.550e+01		- Weight
S12Z	1.700e+01		h differi
S12Z	4.500e+00	······································	i
S12Z	1.150e+01		Hill Hold
S12Z	4.500e+00	<u> </u>	, ninger life in
S12Z	4.500e+00		<u>i nyani</u> janyi
S12Z	7.000e+00	¹	p-septemp
S12Z	6.000e+00		i na s ala di kacila
S12Z	1.200e+01		Harle
S12Z	5.000e+00	┙ <mark>┈┈┈╶╌┈╴╌┈╴╴┈╴╌╴╌╴╌╴╌╴╌╴╌╴╌╴╴╴╴╴╴╴╴╴╴╴╴╴</mark>	i till the second s
S12Z	6.000e+00		n in the second
S12Z	3.500e+00		n an life a
S12Z	4.500e+00		r vije lijve
S12Z	5.500e+00	a a far a	, ∖ nti∳ne
S12Z	4.5009+00		i ajais i
S12Z	3.000e+00	/	, and the second second
S12Z	3.000e+00		, William and the second
S12Z	2.000e+00		
S12Z	3.000e+00		<u>, an i</u> a
S12Z	2.500e+00		
S12Z	4.000e+00		الدق أجزجتها
S12Z	3.000e+00)	e na like se
S12Z	3.000e+00		nia-iĝij
S12Z	6.500e+00		, and the second se
S12Z	2.000e+00		
S12Z	3.5000+00	<u>,</u>	Hatt
S12Z	5.000e+00		
S12Z	3.5000+00		
S12Z	2.000e+00		, second and
S12Z	2.500e+00		-
S12Z	1.500e+00		
S12Z	1.500e+00		
Minute	c		10

Comparison of deep moonquake stacks Examples : A01 best S/N quake

Comparison of deep moonquake stacks Examples : A06 used for core detection

Comparison of deep moonquake stacks Examples : A06 used for core detection

51

Comparison of deep moonquake stacks Statistics

- Very high correlations coefficients (over 500s records)
- => Data not limited by sensor/env. noise but by A/D LSB
- => Can be used for waveform analysis

Institut Supérieur de l'Aéronautique et de l'Espace

10, avenue Édouard-Belin – BP 54032 31055 Toulouse Cedex 4 – France T +33 5 61 33 80 80

www.isae-supaero.fr

