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The Concept (Selected by NASA for 2024/2025 launch)
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FSS Key Questions

Objective 1: Is seismicity different on the farside or

did Apollo miss it due to deep partial melt?

Objective 2: How do impact processes shape the

lunar crust inside and outside Schrodinger Crater?

Objective 3: What is the current micrometeorite
impact rate driving seismic hum?
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FSS delivers a vertical
component Very Broad Band
seismometer (VBBZ), the most
sensitive seismometer to fly on
a planetary mission, and a very
capable and compact 3-
component SP seismometer,
both based on the
instrumentation of the
currently-operating InSight
Mars mission.

These instruments are
delivered inside a thermal
enclosure incorporating
independent command, power,
and communications systems
to outlive the commercial
lander and deliver continuous
day and night seismic data for
months.



Lunar Seismology

Earthquake at station CCM * Lunar seismology is very different than Earth
_# seismology with unique challenges
* The Apollo instruments were extremely sensitive
instruments, but were limited by very coarse
A R . digitization
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Farside Seismicity

* Nearly all located deep moonquake
clusters and shallow moonquake
locations are on the nearside of the
Moon

e How much of this is due to attenuation
in the deep lunar mantle and how much
is due to fundamental differences in

seism |C|ty’p Ray paths in Garcia et al. (2019) M1 model

from known deep moonquakes
e Paths from known repeating deep

moonquake locations to Schrodinger
Pass thfo!lgh the deep mantle : Black (P), Blue (S) from Apollo
constraining that structure, while Red(P), Purple (S) with FSS
recording of new sites on the far side /TP
will directly constrain farside activity
rates




Local structure at Schrodinger

e Schrodinger Crater is well-preserved impact crater
with a peak ring and smooth floors interpreted as
impact melts

* 3-component seismic records present the potential
for resolving crustal thickness and layering through
a receiver function approach

* Continuous noise records can be autocorrelated to .
obtain the seismic reflectivity response belowthe ° Sum ey
landing site 4 B YV A

o -1
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Moon (Vinnik gtél. 2001) Mars (Knapmeyer et al. 2021)

e Local crustal structure can be used to anchor
global gravity-derived models
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The lunar background hum

* The background seismic noise on the | N
. . _, Moon seismometers: resolution
Moon is expected to be driven by the 107 e, 10
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The lunar background hum

* The background seismic noise on the Moon is -
expected to be driven by the regular impacts
of micrometeorites (Lognonné et al. 2009)
and micro-moonquakes

* Apollo seismometers were not able to record
the level of this background noise due to the
sensitivity of the instruments and the
digitization noise

 VBBZ will record at a lower noise level than
Apollo and either directly constrain the lunar |
background noise, or lower the upper bound
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of that noise level T ey
* This can be used to better constrain the
impact rate of the smallest micrometeorites, VBBLFSS

an important goal for long term human safety
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From Lognonné et al (2009)
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Science Traceability

Decadal Survey Questions Science Goals Science Questions Investigation Objective Requirements Mission Top Level
. Requirements
Projected
Measurement Requirement Performance

1.5x10™"° m/is’/Hz" or

* How do the structure and  Objective 1: What is the rate of 1A: Detect >50 farside VBB: 2x10”° m/sZHz 1 month
composition of each Investigate deep lunar  farside seismicity? events g '0)1( 1H mis fhz better over required i hnlg)n .
planetary body vary with  strycture and the rom 9.1-1 Hz frequency band (threshold mission)
e N L Bk ggfaerrzrr:gef:restl‘g:e” Whatis the deep  1B: Detect >10

: - mantle seismic nearside events (known a0 2% 15x10™ misHzZ" or

* What are the major heat- ) aclivity attenuation? clusters or impact VBB: 2x10 ~ m/s'/Hz - 4 months
loss mechanisms and better over required : .

: - flashes) from 0.1-1 Hz (baseline mission)
associated dynamics of frequency band
their cores and mantles?

* What are the major surface Objective 2: What is the crustal  2A: Detect >3 events at 9 2
features and modification  Understand how the  thickness and layering SNR >3 on 3 8P 5x10E misaz 2kl rg/fs R B 4 months
processes on each of the  |ynar crust is affected  beneath Schrodinger  components to create  from 0.3-1 Hz required frequency (baseline mission)
inner planets? by the development of Crater? receiver functions bana

» What were the sources an impact melt basin _ 0 2
and timing of the early and ift;,\éfr?jaﬁon of VBB 2x10™misiHzt K10 mis/Hz or 1 month
recent impact flux of the seismic noise from 0.1-1 Hz better over required (threshold mission)
inner solar system? frequency band

« What were the sources Objective 3: Assess  What is the micro- 3A: Seismic noise over 1
and timing of the early and ' the current seismic noise 10x at least one lunar VBB: 210™ /2t 1.5x10"™"" mis*Hz" or 1 month
recent impact flux of the micrometeorite impact | below Apollo level? | day/night cycle ¢ <X MSTZ - Yetter over required month
inner solar system? e el el asletie rom 0.1-1 Hz frequency band (threshold mission)

activity



Can we record without deploying to the
surface?

The Viking mission (and InSight
prior deployment) taught us that a

On the ground

. % 4.9 Mexico 6.6 Aleutian Islands

deck-mounted seismometer faces 2 o1 N o
. 3 ) r

difficulties. TR UMl 6.1 Tongal|6.3 Balleny Islandsy . udiy

60000

20000 40000 80000

But experiments on the engineering B __Onthedeck
model of the MSL Curiosity rover S Body waves
. s B A AN M N A o L M iy, O i i
show ground motion can be well- 510 . TR
TR Al ahin Surkaice waves (AL A

coupled through the structure of a
spacecraft below the resonant
frequency B
On the Moon, there will be no wind
noise, and thermal noise is

20000 40000 60000 80000

time / sec

10" 10! 10

10°

(=]
o
o

101

Coherence
[
<
o

expected to be concentrated near e 107 10" 10’
dawn and dusk (as demonstrated £ 100
by thermal moonquakes measured o
by Apollo instruments) TS S— - - 1,

Frequency (Hz)

From Panning and Kedar (2019)



The VBBZ seismometer

3 FM on Mars but 3 spare FMs + 2 QMs available forthe Moon !

e Uses a flight spare VBB seismometer from the
InSight mission

* Spring needs to be replaced to account for lunar
gravity and rotated to sense vertical motions
(rather than 3 tilted components as in InSight)

e Packaged in enclosure which allows venting to
attain vacuum on the Moon

e Contributed by partnership between Institut de
physique du globe de Paris/Université de Paris
and CNES with support from ISAE and APC

VBB Sensor Electronics



The VBBZ seismometer

3 FM on Mars but 3 spare FMs + 2 QMs available forthe Moon !

e Uses a flight spare VBB seismometer from the
InSight mission
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The VBBZ seismometer

3 FM on Mars but 3 spare FMs + 2 QMs available forthe Moon !

e Uses a flight spare VBB seismometer from the
InSight mission

* Spring needs to be replaced to account for lunar
gravity and rotated to sense vertical motions
(rather than 3 tilted components as in InSight)

e Packaged in enclosure which allows venting to
attain vacuum on the Moon

e Contributed by partnership between Institut de
physique du globe de Paris/Université de Paris
and CNES with support from ISAE and APC

VBB Sensor Electronics



The SP seismometer

* Micromachined silicon system
* New build based on InSight heritage

e Spring adjusted for lunar gravity and changed
to Galperin configuration (3 tilted
components) rather than 1 vertical and 2
horizontal sensors as on InSight

* Delivered by Kinemetrics, Inc. in collaboration

with Oxford University and Imperial College,
London

Suspension
etched
through die

Wirebond
pads to
electronics

Capacitive
Displacement
Transducer
(DT) electrodes
on die & strip

25mm

W Mass (PM)

25 x 25 mm
wide silicon
PM die

2 mm-wide
glass DT
strip

Pads
DT-PM
connection

Coils plated on proof
mass allow feedback
and calibration

Housing height
35mm



Instrument sensitivity
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Instrument sensitivity: comparison with signals

* The FSS —VBBZ will explore with B
unprecedent sensitivity seismic P NN
waves down to 0.1 Hz g9 | |

* It will however NOT be sensitive
enough for exploring the long o |
period seismic noise and signals
below 0.1 Hz

* STEPS to be done by future T
missions, including € o

* LGN with Optical VBBs 2 o
e Future GW oriented missions... -
v "’ Frequency ( Hz ) ’ VBB-SE2

( considered for JAXA Selen
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The package design

* Powered by solar panel with
sufficient batteries to operate
through the night

* Thermal system relies on cube
within cube separated by
spacerless multi-layer insulation

e Command, communications
and power systems based on
MarCO flight spares delivered
by University of Michigan

Instrument
Electronics

v
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Patch
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Radiator
(mini-LHP

condenser)

Lander
Adapter

Fixed Solar
Panel (SP)

MarCO
C&DH,
- Power &
Comm.

30cmil] .

VBB vertical

Seismometer



Power (W)

FSS Power profile

* Solar panel charges
battery during the day
(enough power even if
misaligned by 20
degrees)

* Communications only
performed during the
day

* Seismometers operate
continuously through
the night

FSS Power Profile

. Battery State of
Charge

Solar Array Output

FSS Power

(%) abieyd jo ajels Aispeg




FSS Operations profile

. . I&T m Flight O
« Operations are a joint effort iy o |
FSS I&T =3 . Lander I&T Launch Cruise  Lunar Orbit DL
between CNES/IPGP and JPL i
/ : Ground Ops
* Communication during the day  science RIS g paytime ops (I
: : : SEIS T oS-
* Nighttime data is collected and e s SRR TP
. e e, orta S-S . / B
stored in data acquisition system R=_InDaa  Nightime Ops
while Command system sleeps . . - Relay
1 “a
» Data will be distributed to N S0 e
community following NASA Command
. . . . . Generation <— Ops Center
guidelines, in a similar way as I . —
ps Center

SEIS on InSight
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Exploring long period seismic signals: requirements
Shallow moonqguake: 10 Nm, 30 km prof, A=90°
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Exploring long period seismic signals: requirements
eep moonquake: 5 1013 Nm, A1, FSS
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Exploring long period seismic signals:
requirements for GW DMQ noise corrections...

Differential disp. @ 10 km North (1 day ASD, FSS site) 10-10 Differential disp. @ 10 km East

Differential Displacement 5103 Nm
(e.g. Laser strainmeter)

ASD m/Hz'?
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Spheroidal/Toroidals

Strain 5103 Nm /5 10! Nm Lo UU o
(e.g. any strainmeter) 2 j\ 2,
Full signal (Spheroidal+Toroidals) 2 /\ | }M w \W’ 2
Horizontal acceleration % o2 w Y
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Summary

* FSS will deploy in 2024-2025 an autonomous seismic package on the
Moon with a VBBZ

* Performances will be more than 10x better than Apollo for body waves
detection, with new findings on the internal structure and far side lunar
seismicity

* Steps after FSS must integrate

* Better performances on 3 axis instead of only vertical axis ( Optical VBB, Candidate
for LGN and EL3 seismic station among other)

* Even much better performances will be required for detecting Normal modes



Summary for GW requirements

« DMQ will generate likely a noise close to 1024 m/s2/Hz%/2 x 100f,
which will be a superposition of many 10s of small DMQs

* Even if each DMQ will have a known pattern, determining the
amplitude (and start time) of all these superimposing patterns might
be challenging

* Geophysical science return of seismic systems compatible with GW
will therefore be extremely large and will include the determination
of the Lunar free oscillation spectrums



