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Penzias and Wilson (1965) discovered that the Universe 
is permeated by the CMB electromagnetic radiation

The Universe is permeated by a stochastic GWB generated in the early Universe

A background of GWs can also emerge from the incoherent superposition of a 
large number of astrophysical sources, too weak to be detected separately, and 
such that the number of sources that contribute to each frequency bin is much 
larger than one
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It would appear as noise in a single GW detector

But   noise    >>    strain

To detect a GWB take the correlation between two detector outputs:

How de we detect a GWB ?
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method provides a check on whether a proposed SGWB
signal is consistent with an isotropic SGWB or if it is
more consistent with environmental disturbances. Such a
method o↵ers complementary information to approaches
that attempt to subtract or mitigate correlated noise.

In this paper, we take a di↵erent tact. We model the
contribution of correlated magnetic noise from Schumann
resonances to the frequency-domain SGWB estimator
used by most searches [22]. We propose a method to sim-
ultaneously detect correlated magnetic noise and a SGWB
using local on-site magnetometers and current SGWB
search data products. We then demonstrate this method
using realistic time-domain and frequency-domain syn-
thetic data sets with varying levels of correlated magnetic
noise. Such a method o↵ers an alternative to Wiener filer-
ing, but could also be used on data that has already had
Wiener filtering subtraction applied, given that Wiener
filtering in the low signal-to-noise regime can result in
imperfect subtraction [20].

The rest of this paper is organized as follows. In Sec-
tion II, we introduce the cross-correlation statistic used in
SGWB searches, and highlight complications introduced
by correlated detector noise. In Section III, we explain
the Schumann resonances and their coupling to the detect-
ors, and we present the way we model this coupling. We
then present a method of simulating synthetic time series
data that includes a correlated magnetic spectrum in a
multi-detector network. In Section IV, we discuss a model
for the SGWB search statistic that includes correlated
magnetic noise, and demonstrate how we use that model
to co-detect the presence of correlated magnetic noise and
a SGWB. We present results on synthetic data in Sec-
tion V, and finish with a brief discussion and suggestions
for future work in Section VI.

II. SGWB AND SEARCH METHODS

If we assume the SGWB is isotropic, Gaussian, station-
ary, and unpolarized, then it is fully characterized by the
dimensionless energy density per logarithmic frequency
interval

⌦gw(f) =
1

⇢c

d⇢gw(f)

dln(f)
, (1)

where d⇢gw is the GW energy density in the frequency
interval ln f to ln f +d ln f , and ⇢c = 3H2
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critical energy density to close the Universe. It is common
to model the SGWB spectrum as a power law:

⌦gw(f) = ⌦↵
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where ⌦↵ is the amplitude at a reference frequency, fref ,
and ↵ is the spectral index. We will use fref = 25 Hz.

Unresolved CBCs give a background spectrum with
↵ = 2/3; slow roll inflation models and cosmic strings
predict ↵ = 0. It is also common to consider a model

that is flat in GW power, which corresponds to ↵ = 3,
to mimic signals like those from phase transitions and
supernovae [8]. Recent estimates suggest that the SGWB
could be detected by the Advanced LIGO and Advanced
Virgo detector network once these detectors reach design
sensitivity and integrate for O(years) [7].

In what follows, we consider a SGWB search that uses a
cross-correlation estimator that is optimal for a Gaussian,
stationary, unpolarized and isotropic background. Our
estimator, Ĉij(f), for the SGWB measured from detectors
i and j is

Ĉij(f ; t) =
2
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i
(f ; t)s̃j(f ; t)]

�ij(f)S0(f)
, (3)

where s̃i(f ; t) is the Fourier transform of the strain time
series in detector i starting at time t, �ij(f) is the
normalized overlap reduction function (ORF) [13, 23]
between detectors i and j, T is the duration over which
the Fourier transform is taken, and S0(f) is the spec-
tral shape for a SGWB that is flat in energy density,
S0(f) = 3H
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In the limit where the total GW strain amplitude in
detector i, h̃i(f), is much less than the intrinsic detector
noise, ñi(f), the variance of Ĉij(f ; t) is given by
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where Pi(f ; t) is the one-sided power spectral density
(PSD) of detector i between times t and t + T , and �f is
the frequency resolution.

In general, Eq. (3) and Eq. (4) are estimated for many
short time-segments of T = 192 s and these segments are
optimally combined in a post-processing step given by
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where k indexes the time segments. For a set of Nt time
segments starting at times {tk}

k=Nt
k=1 , we have defined

Ĉij,k(f) = Ĉij(f ; tk), and likewise for its variance.
It is worth considering the expectation value of the

estimator, hĈij(f)i, in some detail (we will suppress the
time-dependence for brevity). Let us assume that s̃i(f)
can be written as

s̃i(f) = h̃i(f) + ñi(f), (7)

where ñi(f) is the Fourier transform of the instrument
noise in detector i, and
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is the total GW signal in detector i located at ~xi. Here
F
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i
(f, r̂) is the response of detector i to a plane-wave
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traveling in direction r̂ with polarization A, and h̃A(f, r̂)
is the Fourier amplitude of that plane wave. Consequently,
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If we assume that the SGWB is isotropic, Gaussian, sta-
tionary and unpolarized, then it is well-described by a
single power spectral density Sgw(f),
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where �T (f � f
0) is the finite-time approximation to the

dirac delta function, and Sgw(f) is related to the dimen-
sionless energy density as follows
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Note that, for the existing detectors, the overlap reduction
function, �ij(f), accounts for all the geometric factors
that come into play when cross-correlating data from
di↵erent detectors [13].

Combining Eqs. (9)–(11), substituting into Eq. (3), and
then including the time-dependence again, we find

hĈij(f ; t)i = ⌦gw(f) + 2 Re
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where we have assumed that the GW signal and the
intrinsic noise are uncorrelated, hh̃

⇤
i
(f)ñj(f 0)i = 0, and

that the noise in each frequency bin is independent. It is
clear from (12) that in the absence of correlated noise, i.e.
hñ

⇤
i
(f)ñj(f)i = 0, hĈij(f)i is an estimator for ⌦gw(f).

However, this is not the case when hñ
⇤
i
(f)ñj(f)i 6= 0.

Schumann resonances are a potential source of correl-
ated magnetic noise. An estimate of the correlated mag-
netic noise contribution in the isotropic SGWB search
using data from Advanced LIGO’s first and second ob-
serving runs indicates that it is not yet an issue for current
searches [24]. However, as detectors grow more sensit-
ive, this will likely change, and the magnetic noise budget
could dominate the signal [16]. Hence, a careful treatment
of correlated magnetic noise is of vital importance.

III. SIMULATING GW DATA WITH
CORRELATED NOISE

In this section, we discuss how we simulate GW data
that is contaminated with correlated noise due to the Schu-
mann resonances. In IIIA we discuss the Schumann res-
onances and their general properties. In III B we present
a model for the coupling of magnetic fields into GW de-
tectors. In III C we show how to simulate multiple data
streams that have correlated Gaussian noise components,
and then we apply that method to our specific use case.

A. Schumann Resonances

In 1952, Schumann predicted the existence of global
extremely low frequency (ELF) peaks in the electromag-
netic field of the Earth, which were subsequently ob-
served [25, 26]. The resonances are eigenmodes of the
conducting spherical cavity formed by the surface of the
Earth and its ionosphere, and are excited by lightning
discharges [27]. The first harmonic, which corresponds
to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
detector. We can clearly see the first five harmonics of
the Schumann resonances. There is a diurnal variation in
the amplitude of the Schumann resonances that corres-
ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
time of year and the location [27, 29, 30]. What is shown
in Figure 1 represents a trough in the height of the peaks
over the course of the day at Virgo. Despite this diurnal
variation, we will model the spectrum as stationary in
this paper for simplicity.

Figure 1. Power spectral density of magnetometer data near
the Advanced Virgo detector. The blue is the inverse-averaged
power spectral density for many 32 s chunks of data for the
period from 00:00–02:00 UTC on July 9th, 2019. We use
inverse averaging to account for possible magnetic transients
that occur during this time. We produce the orange curve
by removing the large, narrow spectral features and applying
a smoothing filter. We can clearly see five harmonics of the
Schumann resonances. The large, narrow spectral features are
caused by local magnetic noise on site at Virgo.

The Schumann resonances, being global excitations, are
coherent across the O(1000 km) distance scales between
GW detectors [19, 20]. We model the time-series induced
in magnetometers from the Schumann resonances as Gaus-
sian, stationary, and unpolarized, with a power-spectral
density that can be described by a set of Lorentzians

A detection of the GWB from unresolved compact binary coalescences could be made 
by Advanced LIGO and Advanced Virgo at their design sensitivities

SNR grows (slowly) over time:
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Assuming  the GWB to be isotropic, Gaussian, stationary and unpolarised:

How de we detect a GWB ?

Single power spectral density (PSD)
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method provides a check on whether a proposed SGWB
signal is consistent with an isotropic SGWB or if it is
more consistent with environmental disturbances. Such a
method o↵ers complementary information to approaches
that attempt to subtract or mitigate correlated noise.

In this paper, we take a di↵erent tact. We model the
contribution of correlated magnetic noise from Schumann
resonances to the frequency-domain SGWB estimator
used by most searches [22]. We propose a method to sim-
ultaneously detect correlated magnetic noise and a SGWB
using local on-site magnetometers and current SGWB
search data products. We then demonstrate this method
using realistic time-domain and frequency-domain syn-
thetic data sets with varying levels of correlated magnetic
noise. Such a method o↵ers an alternative to Wiener filer-
ing, but could also be used on data that has already had
Wiener filtering subtraction applied, given that Wiener
filtering in the low signal-to-noise regime can result in
imperfect subtraction [20].

The rest of this paper is organized as follows. In Sec-
tion II, we introduce the cross-correlation statistic used in
SGWB searches, and highlight complications introduced
by correlated detector noise. In Section III, we explain
the Schumann resonances and their coupling to the detect-
ors, and we present the way we model this coupling. We
then present a method of simulating synthetic time series
data that includes a correlated magnetic spectrum in a
multi-detector network. In Section IV, we discuss a model
for the SGWB search statistic that includes correlated
magnetic noise, and demonstrate how we use that model
to co-detect the presence of correlated magnetic noise and
a SGWB. We present results on synthetic data in Sec-
tion V, and finish with a brief discussion and suggestions
for future work in Section VI.

II. SGWB AND SEARCH METHODS

If we assume the SGWB is isotropic, Gaussian, station-
ary, and unpolarized, then it is fully characterized by the
dimensionless energy density per logarithmic frequency
interval

⌦gw(f) =
1

⇢c

d⇢gw(f)

dln(f)
, (1)

where d⇢gw is the GW energy density in the frequency
interval ln f to ln f +d ln f , and ⇢c = 3H2
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critical energy density to close the Universe. It is common
to model the SGWB spectrum as a power law:
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where ⌦↵ is the amplitude at a reference frequency, fref ,
and ↵ is the spectral index. We will use fref = 25 Hz.

Unresolved CBCs give a background spectrum with
↵ = 2/3; slow roll inflation models and cosmic strings
predict ↵ = 0. It is also common to consider a model

that is flat in GW power, which corresponds to ↵ = 3,
to mimic signals like those from phase transitions and
supernovae [8]. Recent estimates suggest that the SGWB
could be detected by the Advanced LIGO and Advanced
Virgo detector network once these detectors reach design
sensitivity and integrate for O(years) [7].

In what follows, we consider a SGWB search that uses a
cross-correlation estimator that is optimal for a Gaussian,
stationary, unpolarized and isotropic background. Our
estimator, Ĉij(f), for the SGWB measured from detectors
i and j is

Ĉij(f ; t) =
2
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Re[s̃⇤
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�ij(f)S0(f)
, (3)

where s̃i(f ; t) is the Fourier transform of the strain time
series in detector i starting at time t, �ij(f) is the
normalized overlap reduction function (ORF) [13, 23]
between detectors i and j, T is the duration over which
the Fourier transform is taken, and S0(f) is the spec-
tral shape for a SGWB that is flat in energy density,
S0(f) = 3H
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In the limit where the total GW strain amplitude in
detector i, h̃i(f), is much less than the intrinsic detector
noise, ñi(f), the variance of Ĉij(f ; t) is given by
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where Pi(f ; t) is the one-sided power spectral density
(PSD) of detector i between times t and t + T , and �f is
the frequency resolution.

In general, Eq. (3) and Eq. (4) are estimated for many
short time-segments of T = 192 s and these segments are
optimally combined in a post-processing step given by
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where k indexes the time segments. For a set of Nt time
segments starting at times {tk}

k=Nt
k=1 , we have defined

Ĉij,k(f) = Ĉij(f ; tk), and likewise for its variance.
It is worth considering the expectation value of the

estimator, hĈij(f)i, in some detail (we will suppress the
time-dependence for brevity). Let us assume that s̃i(f)
can be written as

s̃i(f) = h̃i(f) + ñi(f), (7)

where ñi(f) is the Fourier transform of the instrument
noise in detector i, and
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method provides a check on whether a proposed SGWB
signal is consistent with an isotropic SGWB or if it is
more consistent with environmental disturbances. Such a
method o↵ers complementary information to approaches
that attempt to subtract or mitigate correlated noise.

In this paper, we take a di↵erent tact. We model the
contribution of correlated magnetic noise from Schumann
resonances to the frequency-domain SGWB estimator
used by most searches [22]. We propose a method to sim-
ultaneously detect correlated magnetic noise and a SGWB
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search data products. We then demonstrate this method
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thetic data sets with varying levels of correlated magnetic
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Wiener filtering subtraction applied, given that Wiener
filtering in the low signal-to-noise regime can result in
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The rest of this paper is organized as follows. In Sec-
tion II, we introduce the cross-correlation statistic used in
SGWB searches, and highlight complications introduced
by correlated detector noise. In Section III, we explain
the Schumann resonances and their coupling to the detect-
ors, and we present the way we model this coupling. We
then present a method of simulating synthetic time series
data that includes a correlated magnetic spectrum in a
multi-detector network. In Section IV, we discuss a model
for the SGWB search statistic that includes correlated
magnetic noise, and demonstrate how we use that model
to co-detect the presence of correlated magnetic noise and
a SGWB. We present results on synthetic data in Sec-
tion V, and finish with a brief discussion and suggestions
for future work in Section VI.
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where ⌦↵ is the amplitude at a reference frequency, fref ,
and ↵ is the spectral index. We will use fref = 25 Hz.

Unresolved CBCs give a background spectrum with
↵ = 2/3; slow roll inflation models and cosmic strings
predict ↵ = 0. It is also common to consider a model

that is flat in GW power, which corresponds to ↵ = 3,
to mimic signals like those from phase transitions and
supernovae [8]. Recent estimates suggest that the SGWB
could be detected by the Advanced LIGO and Advanced
Virgo detector network once these detectors reach design
sensitivity and integrate for O(years) [7].

In what follows, we consider a SGWB search that uses a
cross-correlation estimator that is optimal for a Gaussian,
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where s̃i(f ; t) is the Fourier transform of the strain time
series in detector i starting at time t, �ij(f) is the
normalized overlap reduction function (ORF) [13, 23]
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traveling in direction r̂ with polarization A, and h̃A(f, r̂)
is the Fourier amplitude of that plane wave. Consequently,
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If we assume that the SGWB is isotropic, Gaussian, sta-
tionary and unpolarized, then it is well-described by a
single power spectral density Sgw(f),
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Note that, for the existing detectors, the overlap reduction
function, �ij(f), accounts for all the geometric factors
that come into play when cross-correlating data from
di↵erent detectors [13].

Combining Eqs. (9)–(11), substituting into Eq. (3), and
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where we have assumed that the GW signal and the
intrinsic noise are uncorrelated, hh̃
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that the noise in each frequency bin is independent. It is
clear from (12) that in the absence of correlated noise, i.e.
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Schumann resonances are a potential source of correl-
ated magnetic noise. An estimate of the correlated mag-
netic noise contribution in the isotropic SGWB search
using data from Advanced LIGO’s first and second ob-
serving runs indicates that it is not yet an issue for current
searches [24]. However, as detectors grow more sensit-
ive, this will likely change, and the magnetic noise budget
could dominate the signal [16]. Hence, a careful treatment
of correlated magnetic noise is of vital importance.

III. SIMULATING GW DATA WITH
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In this section, we discuss how we simulate GW data
that is contaminated with correlated noise due to the Schu-
mann resonances. In IIIA we discuss the Schumann res-
onances and their general properties. In III B we present
a model for the coupling of magnetic fields into GW de-
tectors. In III C we show how to simulate multiple data
streams that have correlated Gaussian noise components,
and then we apply that method to our specific use case.

A. Schumann Resonances

In 1952, Schumann predicted the existence of global
extremely low frequency (ELF) peaks in the electromag-
netic field of the Earth, which were subsequently ob-
served [25, 26]. The resonances are eigenmodes of the
conducting spherical cavity formed by the surface of the
Earth and its ionosphere, and are excited by lightning
discharges [27]. The first harmonic, which corresponds
to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
detector. We can clearly see the first five harmonics of
the Schumann resonances. There is a diurnal variation in
the amplitude of the Schumann resonances that corres-
ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
time of year and the location [27, 29, 30]. What is shown
in Figure 1 represents a trough in the height of the peaks
over the course of the day at Virgo. Despite this diurnal
variation, we will model the spectrum as stationary in
this paper for simplicity.

Figure 1. Power spectral density of magnetometer data near
the Advanced Virgo detector. The blue is the inverse-averaged
power spectral density for many 32 s chunks of data for the
period from 00:00–02:00 UTC on July 9th, 2019. We use
inverse averaging to account for possible magnetic transients
that occur during this time. We produce the orange curve
by removing the large, narrow spectral features and applying
a smoothing filter. We can clearly see five harmonics of the
Schumann resonances. The large, narrow spectral features are
caused by local magnetic noise on site at Virgo.

The Schumann resonances, being global excitations, are
coherent across the O(1000 km) distance scales between
GW detectors [19, 20]. We model the time-series induced
in magnetometers from the Schumann resonances as Gaus-
sian, stationary, and unpolarized, with a power-spectral
density that can be described by a set of Lorentzians
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⇤
i
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netic noise contribution in the isotropic SGWB search
using data from Advanced LIGO’s first and second ob-
serving runs indicates that it is not yet an issue for current
searches [24]. However, as detectors grow more sensit-
ive, this will likely change, and the magnetic noise budget
could dominate the signal [16]. Hence, a careful treatment
of correlated magnetic noise is of vital importance.

III. SIMULATING GW DATA WITH
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In this section, we discuss how we simulate GW data
that is contaminated with correlated noise due to the Schu-
mann resonances. In IIIA we discuss the Schumann res-
onances and their general properties. In III B we present
a model for the coupling of magnetic fields into GW de-
tectors. In III C we show how to simulate multiple data
streams that have correlated Gaussian noise components,
and then we apply that method to our specific use case.

A. Schumann Resonances

In 1952, Schumann predicted the existence of global
extremely low frequency (ELF) peaks in the electromag-
netic field of the Earth, which were subsequently ob-
served [25, 26]. The resonances are eigenmodes of the
conducting spherical cavity formed by the surface of the
Earth and its ionosphere, and are excited by lightning
discharges [27]. The first harmonic, which corresponds
to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
detector. We can clearly see the first five harmonics of
the Schumann resonances. There is a diurnal variation in
the amplitude of the Schumann resonances that corres-
ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
time of year and the location [27, 29, 30]. What is shown
in Figure 1 represents a trough in the height of the peaks
over the course of the day at Virgo. Despite this diurnal
variation, we will model the spectrum as stationary in
this paper for simplicity.

Figure 1. Power spectral density of magnetometer data near
the Advanced Virgo detector. The blue is the inverse-averaged
power spectral density for many 32 s chunks of data for the
period from 00:00–02:00 UTC on July 9th, 2019. We use
inverse averaging to account for possible magnetic transients
that occur during this time. We produce the orange curve
by removing the large, narrow spectral features and applying
a smoothing filter. We can clearly see five harmonics of the
Schumann resonances. The large, narrow spectral features are
caused by local magnetic noise on site at Virgo.

The Schumann resonances, being global excitations, are
coherent across the O(1000 km) distance scales between
GW detectors [19, 20]. We model the time-series induced
in magnetometers from the Schumann resonances as Gaus-
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density that can be described by a set of Lorentzians
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(f)ñj(f 0)i = 0, and

that the noise in each frequency bin is independent. It is
clear from (12) that in the absence of correlated noise, i.e.
hñ
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netic noise contribution in the isotropic SGWB search
using data from Advanced LIGO’s first and second ob-
serving runs indicates that it is not yet an issue for current
searches [24]. However, as detectors grow more sensit-
ive, this will likely change, and the magnetic noise budget
could dominate the signal [16]. Hence, a careful treatment
of correlated magnetic noise is of vital importance.

III. SIMULATING GW DATA WITH
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In this section, we discuss how we simulate GW data
that is contaminated with correlated noise due to the Schu-
mann resonances. In IIIA we discuss the Schumann res-
onances and their general properties. In III B we present
a model for the coupling of magnetic fields into GW de-
tectors. In III C we show how to simulate multiple data
streams that have correlated Gaussian noise components,
and then we apply that method to our specific use case.

A. Schumann Resonances

In 1952, Schumann predicted the existence of global
extremely low frequency (ELF) peaks in the electromag-
netic field of the Earth, which were subsequently ob-
served [25, 26]. The resonances are eigenmodes of the
conducting spherical cavity formed by the surface of the
Earth and its ionosphere, and are excited by lightning
discharges [27]. The first harmonic, which corresponds
to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
detector. We can clearly see the first five harmonics of
the Schumann resonances. There is a diurnal variation in
the amplitude of the Schumann resonances that corres-
ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
time of year and the location [27, 29, 30]. What is shown
in Figure 1 represents a trough in the height of the peaks
over the course of the day at Virgo. Despite this diurnal
variation, we will model the spectrum as stationary in
this paper for simplicity.

Figure 1. Power spectral density of magnetometer data near
the Advanced Virgo detector. The blue is the inverse-averaged
power spectral density for many 32 s chunks of data for the
period from 00:00–02:00 UTC on July 9th, 2019. We use
inverse averaging to account for possible magnetic transients
that occur during this time. We produce the orange curve
by removing the large, narrow spectral features and applying
a smoothing filter. We can clearly see five harmonics of the
Schumann resonances. The large, narrow spectral features are
caused by local magnetic noise on site at Virgo.

The Schumann resonances, being global excitations, are
coherent across the O(1000 km) distance scales between
GW detectors [19, 20]. We model the time-series induced
in magnetometers from the Schumann resonances as Gaus-
sian, stationary, and unpolarized, with a power-spectral
density that can be described by a set of Lorentzians
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Note that, for the existing detectors, the overlap reduction
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Schumann resonances are a potential source of correl-
ated magnetic noise. An estimate of the correlated mag-
netic noise contribution in the isotropic SGWB search
using data from Advanced LIGO’s first and second ob-
serving runs indicates that it is not yet an issue for current
searches [24]. However, as detectors grow more sensit-
ive, this will likely change, and the magnetic noise budget
could dominate the signal [16]. Hence, a careful treatment
of correlated magnetic noise is of vital importance.

III. SIMULATING GW DATA WITH
CORRELATED NOISE

In this section, we discuss how we simulate GW data
that is contaminated with correlated noise due to the Schu-
mann resonances. In IIIA we discuss the Schumann res-
onances and their general properties. In III B we present
a model for the coupling of magnetic fields into GW de-
tectors. In III C we show how to simulate multiple data
streams that have correlated Gaussian noise components,
and then we apply that method to our specific use case.

A. Schumann Resonances

In 1952, Schumann predicted the existence of global
extremely low frequency (ELF) peaks in the electromag-
netic field of the Earth, which were subsequently ob-
served [25, 26]. The resonances are eigenmodes of the
conducting spherical cavity formed by the surface of the
Earth and its ionosphere, and are excited by lightning
discharges [27]. The first harmonic, which corresponds
to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
detector. We can clearly see the first five harmonics of
the Schumann resonances. There is a diurnal variation in
the amplitude of the Schumann resonances that corres-
ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
time of year and the location [27, 29, 30]. What is shown
in Figure 1 represents a trough in the height of the peaks
over the course of the day at Virgo. Despite this diurnal
variation, we will model the spectrum as stationary in
this paper for simplicity.

Figure 1. Power spectral density of magnetometer data near
the Advanced Virgo detector. The blue is the inverse-averaged
power spectral density for many 32 s chunks of data for the
period from 00:00–02:00 UTC on July 9th, 2019. We use
inverse averaging to account for possible magnetic transients
that occur during this time. We produce the orange curve
by removing the large, narrow spectral features and applying
a smoothing filter. We can clearly see five harmonics of the
Schumann resonances. The large, narrow spectral features are
caused by local magnetic noise on site at Virgo.

The Schumann resonances, being global excitations, are
coherent across the O(1000 km) distance scales between
GW detectors [19, 20]. We model the time-series induced
in magnetometers from the Schumann resonances as Gaus-
sian, stationary, and unpolarized, with a power-spectral
density that can be described by a set of Lorentzians
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Schumann resonances are a potential source of correl-
ated magnetic noise. An estimate of the correlated mag-
netic noise contribution in the isotropic SGWB search
using data from Advanced LIGO’s first and second ob-
serving runs indicates that it is not yet an issue for current
searches [24]. However, as detectors grow more sensit-
ive, this will likely change, and the magnetic noise budget
could dominate the signal [16]. Hence, a careful treatment
of correlated magnetic noise is of vital importance.

III. SIMULATING GW DATA WITH
CORRELATED NOISE

In this section, we discuss how we simulate GW data
that is contaminated with correlated noise due to the Schu-
mann resonances. In IIIA we discuss the Schumann res-
onances and their general properties. In III B we present
a model for the coupling of magnetic fields into GW de-
tectors. In III C we show how to simulate multiple data
streams that have correlated Gaussian noise components,
and then we apply that method to our specific use case.

A. Schumann Resonances

In 1952, Schumann predicted the existence of global
extremely low frequency (ELF) peaks in the electromag-
netic field of the Earth, which were subsequently ob-
served [25, 26]. The resonances are eigenmodes of the
conducting spherical cavity formed by the surface of the
Earth and its ionosphere, and are excited by lightning
discharges [27]. The first harmonic, which corresponds
to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
detector. We can clearly see the first five harmonics of
the Schumann resonances. There is a diurnal variation in
the amplitude of the Schumann resonances that corres-
ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
time of year and the location [27, 29, 30]. What is shown
in Figure 1 represents a trough in the height of the peaks
over the course of the day at Virgo. Despite this diurnal
variation, we will model the spectrum as stationary in
this paper for simplicity.

Figure 1. Power spectral density of magnetometer data near
the Advanced Virgo detector. The blue is the inverse-averaged
power spectral density for many 32 s chunks of data for the
period from 00:00–02:00 UTC on July 9th, 2019. We use
inverse averaging to account for possible magnetic transients
that occur during this time. We produce the orange curve
by removing the large, narrow spectral features and applying
a smoothing filter. We can clearly see five harmonics of the
Schumann resonances. The large, narrow spectral features are
caused by local magnetic noise on site at Virgo.

The Schumann resonances, being global excitations, are
coherent across the O(1000 km) distance scales between
GW detectors [19, 20]. We model the time-series induced
in magnetometers from the Schumann resonances as Gaus-
sian, stationary, and unpolarized, with a power-spectral
density that can be described by a set of Lorentzians
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Schumann resonances are a potential source of correl-
ated magnetic noise. An estimate of the correlated mag-
netic noise contribution in the isotropic SGWB search
using data from Advanced LIGO’s first and second ob-
serving runs indicates that it is not yet an issue for current
searches [24]. However, as detectors grow more sensit-
ive, this will likely change, and the magnetic noise budget
could dominate the signal [16]. Hence, a careful treatment
of correlated magnetic noise is of vital importance.

III. SIMULATING GW DATA WITH
CORRELATED NOISE

In this section, we discuss how we simulate GW data
that is contaminated with correlated noise due to the Schu-
mann resonances. In IIIA we discuss the Schumann res-
onances and their general properties. In III B we present
a model for the coupling of magnetic fields into GW de-
tectors. In III C we show how to simulate multiple data
streams that have correlated Gaussian noise components,
and then we apply that method to our specific use case.

A. Schumann Resonances

In 1952, Schumann predicted the existence of global
extremely low frequency (ELF) peaks in the electromag-
netic field of the Earth, which were subsequently ob-
served [25, 26]. The resonances are eigenmodes of the
conducting spherical cavity formed by the surface of the
Earth and its ionosphere, and are excited by lightning
discharges [27]. The first harmonic, which corresponds
to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
detector. We can clearly see the first five harmonics of
the Schumann resonances. There is a diurnal variation in
the amplitude of the Schumann resonances that corres-
ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
time of year and the location [27, 29, 30]. What is shown
in Figure 1 represents a trough in the height of the peaks
over the course of the day at Virgo. Despite this diurnal
variation, we will model the spectrum as stationary in
this paper for simplicity.

Figure 1. Power spectral density of magnetometer data near
the Advanced Virgo detector. The blue is the inverse-averaged
power spectral density for many 32 s chunks of data for the
period from 00:00–02:00 UTC on July 9th, 2019. We use
inverse averaging to account for possible magnetic transients
that occur during this time. We produce the orange curve
by removing the large, narrow spectral features and applying
a smoothing filter. We can clearly see five harmonics of the
Schumann resonances. The large, narrow spectral features are
caused by local magnetic noise on site at Virgo.
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coherent across the O(1000 km) distance scales between
GW detectors [19, 20]. We model the time-series induced
in magnetometers from the Schumann resonances as Gaus-
sian, stationary, and unpolarized, with a power-spectral
density that can be described by a set of Lorentzians
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traveling in direction r̂ with polarization A, and h̃A(f, r̂)
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If we assume that the SGWB is isotropic, Gaussian, sta-
tionary and unpolarized, then it is well-described by a
single power spectral density Sgw(f),
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0) is the finite-time approximation to the

dirac delta function, and Sgw(f) is related to the dimen-
sionless energy density as follows
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Note that, for the existing detectors, the overlap reduction
function, �ij(f), accounts for all the geometric factors
that come into play when cross-correlating data from
di↵erent detectors [13].

Combining Eqs. (9)–(11), substituting into Eq. (3), and
then including the time-dependence again, we find

hĈij(f ; t)i = ⌦gw(f) + 2 Re
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where we have assumed that the GW signal and the
intrinsic noise are uncorrelated, hh̃

⇤
i
(f)ñj(f 0)i = 0, and

that the noise in each frequency bin is independent. It is
clear from (12) that in the absence of correlated noise, i.e.
hñ

⇤
i
(f)ñj(f)i = 0, hĈij(f)i is an estimator for ⌦gw(f).

However, this is not the case when hñ
⇤
i
(f)ñj(f)i 6= 0.

Schumann resonances are a potential source of correl-
ated magnetic noise. An estimate of the correlated mag-
netic noise contribution in the isotropic SGWB search
using data from Advanced LIGO’s first and second ob-
serving runs indicates that it is not yet an issue for current
searches [24]. However, as detectors grow more sensit-
ive, this will likely change, and the magnetic noise budget
could dominate the signal [16]. Hence, a careful treatment
of correlated magnetic noise is of vital importance.

III. SIMULATING GW DATA WITH
CORRELATED NOISE

In this section, we discuss how we simulate GW data
that is contaminated with correlated noise due to the Schu-
mann resonances. In IIIA we discuss the Schumann res-
onances and their general properties. In III B we present
a model for the coupling of magnetic fields into GW de-
tectors. In III C we show how to simulate multiple data
streams that have correlated Gaussian noise components,
and then we apply that method to our specific use case.

A. Schumann Resonances

In 1952, Schumann predicted the existence of global
extremely low frequency (ELF) peaks in the electromag-
netic field of the Earth, which were subsequently ob-
served [25, 26]. The resonances are eigenmodes of the
conducting spherical cavity formed by the surface of the
Earth and its ionosphere, and are excited by lightning
discharges [27]. The first harmonic, which corresponds
to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
detector. We can clearly see the first five harmonics of
the Schumann resonances. There is a diurnal variation in
the amplitude of the Schumann resonances that corres-
ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
time of year and the location [27, 29, 30]. What is shown
in Figure 1 represents a trough in the height of the peaks
over the course of the day at Virgo. Despite this diurnal
variation, we will model the spectrum as stationary in
this paper for simplicity.

Figure 1. Power spectral density of magnetometer data near
the Advanced Virgo detector. The blue is the inverse-averaged
power spectral density for many 32 s chunks of data for the
period from 00:00–02:00 UTC on July 9th, 2019. We use
inverse averaging to account for possible magnetic transients
that occur during this time. We produce the orange curve
by removing the large, narrow spectral features and applying
a smoothing filter. We can clearly see five harmonics of the
Schumann resonances. The large, narrow spectral features are
caused by local magnetic noise on site at Virgo.

The Schumann resonances, being global excitations, are
coherent across the O(1000 km) distance scales between
GW detectors [19, 20]. We model the time-series induced
in magnetometers from the Schumann resonances as Gaus-
sian, stationary, and unpolarized, with a power-spectral
density that can be described by a set of Lorentzians
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method provides a check on whether a proposed SGWB
signal is consistent with an isotropic SGWB or if it is
more consistent with environmental disturbances. Such a
method o↵ers complementary information to approaches
that attempt to subtract or mitigate correlated noise.

In this paper, we take a di↵erent tact. We model the
contribution of correlated magnetic noise from Schumann
resonances to the frequency-domain SGWB estimator
used by most searches [22]. We propose a method to sim-
ultaneously detect correlated magnetic noise and a SGWB
using local on-site magnetometers and current SGWB
search data products. We then demonstrate this method
using realistic time-domain and frequency-domain syn-
thetic data sets with varying levels of correlated magnetic
noise. Such a method o↵ers an alternative to Wiener filer-
ing, but could also be used on data that has already had
Wiener filtering subtraction applied, given that Wiener
filtering in the low signal-to-noise regime can result in
imperfect subtraction [20].

The rest of this paper is organized as follows. In Sec-
tion II, we introduce the cross-correlation statistic used in
SGWB searches, and highlight complications introduced
by correlated detector noise. In Section III, we explain
the Schumann resonances and their coupling to the detect-
ors, and we present the way we model this coupling. We
then present a method of simulating synthetic time series
data that includes a correlated magnetic spectrum in a
multi-detector network. In Section IV, we discuss a model
for the SGWB search statistic that includes correlated
magnetic noise, and demonstrate how we use that model
to co-detect the presence of correlated magnetic noise and
a SGWB. We present results on synthetic data in Sec-
tion V, and finish with a brief discussion and suggestions
for future work in Section VI.

II. SGWB AND SEARCH METHODS

If we assume the SGWB is isotropic, Gaussian, station-
ary, and unpolarized, then it is fully characterized by the
dimensionless energy density per logarithmic frequency
interval

⌦gw(f) =
1

⇢c

d⇢gw(f)

dln(f)
, (1)

where d⇢gw is the GW energy density in the frequency
interval ln f to ln f +d ln f , and ⇢c = 3H2

0 c
2
/(8⇡G) is the

critical energy density to close the Universe. It is common
to model the SGWB spectrum as a power law:

⌦gw(f) = ⌦↵

✓
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, (2)

where ⌦↵ is the amplitude at a reference frequency, fref ,
and ↵ is the spectral index. We will use fref = 25 Hz.

Unresolved CBCs give a background spectrum with
↵ = 2/3; slow roll inflation models and cosmic strings
predict ↵ = 0. It is also common to consider a model

that is flat in GW power, which corresponds to ↵ = 3,
to mimic signals like those from phase transitions and
supernovae [8]. Recent estimates suggest that the SGWB
could be detected by the Advanced LIGO and Advanced
Virgo detector network once these detectors reach design
sensitivity and integrate for O(years) [7].

In what follows, we consider a SGWB search that uses a
cross-correlation estimator that is optimal for a Gaussian,
stationary, unpolarized and isotropic background. Our
estimator, Ĉij(f), for the SGWB measured from detectors
i and j is

Ĉij(f ; t) =
2

T

Re[s̃⇤
i
(f ; t)s̃j(f ; t)]

�ij(f)S0(f)
, (3)

where s̃i(f ; t) is the Fourier transform of the strain time
series in detector i starting at time t, �ij(f) is the
normalized overlap reduction function (ORF) [13, 23]
between detectors i and j, T is the duration over which
the Fourier transform is taken, and S0(f) is the spec-
tral shape for a SGWB that is flat in energy density,
S0(f) = 3H

2
0/(10⇡

2
f
3).

In the limit where the total GW strain amplitude in
detector i, h̃i(f), is much less than the intrinsic detector
noise, ñi(f), the variance of Ĉij(f ; t) is given by
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where Pi(f ; t) is the one-sided power spectral density
(PSD) of detector i between times t and t + T , and �f is
the frequency resolution.

In general, Eq. (3) and Eq. (4) are estimated for many
short time-segments of T = 192 s and these segments are
optimally combined in a post-processing step given by
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where k indexes the time segments. For a set of Nt time
segments starting at times {tk}

k=Nt
k=1 , we have defined

Ĉij,k(f) = Ĉij(f ; tk), and likewise for its variance.
It is worth considering the expectation value of the

estimator, hĈij(f)i, in some detail (we will suppress the
time-dependence for brevity). Let us assume that s̃i(f)
can be written as

s̃i(f) = h̃i(f) + ñi(f), (7)

where ñi(f) is the Fourier transform of the instrument
noise in detector i, and

h̃i(f) =
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is the total GW signal in detector i located at ~xi. Here
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(f, r̂) is the response of detector i to a plane-wave
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method provides a check on whether a proposed SGWB
signal is consistent with an isotropic SGWB or if it is
more consistent with environmental disturbances. Such a
method o↵ers complementary information to approaches
that attempt to subtract or mitigate correlated noise.

In this paper, we take a di↵erent tact. We model the
contribution of correlated magnetic noise from Schumann
resonances to the frequency-domain SGWB estimator
used by most searches [22]. We propose a method to sim-
ultaneously detect correlated magnetic noise and a SGWB
using local on-site magnetometers and current SGWB
search data products. We then demonstrate this method
using realistic time-domain and frequency-domain syn-
thetic data sets with varying levels of correlated magnetic
noise. Such a method o↵ers an alternative to Wiener filer-
ing, but could also be used on data that has already had
Wiener filtering subtraction applied, given that Wiener
filtering in the low signal-to-noise regime can result in
imperfect subtraction [20].

The rest of this paper is organized as follows. In Sec-
tion II, we introduce the cross-correlation statistic used in
SGWB searches, and highlight complications introduced
by correlated detector noise. In Section III, we explain
the Schumann resonances and their coupling to the detect-
ors, and we present the way we model this coupling. We
then present a method of simulating synthetic time series
data that includes a correlated magnetic spectrum in a
multi-detector network. In Section IV, we discuss a model
for the SGWB search statistic that includes correlated
magnetic noise, and demonstrate how we use that model
to co-detect the presence of correlated magnetic noise and
a SGWB. We present results on synthetic data in Sec-
tion V, and finish with a brief discussion and suggestions
for future work in Section VI.
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where ⌦↵ is the amplitude at a reference frequency, fref ,
and ↵ is the spectral index. We will use fref = 25 Hz.

Unresolved CBCs give a background spectrum with
↵ = 2/3; slow roll inflation models and cosmic strings
predict ↵ = 0. It is also common to consider a model

that is flat in GW power, which corresponds to ↵ = 3,
to mimic signals like those from phase transitions and
supernovae [8]. Recent estimates suggest that the SGWB
could be detected by the Advanced LIGO and Advanced
Virgo detector network once these detectors reach design
sensitivity and integrate for O(years) [7].

In what follows, we consider a SGWB search that uses a
cross-correlation estimator that is optimal for a Gaussian,
stationary, unpolarized and isotropic background. Our
estimator, Ĉij(f), for the SGWB measured from detectors
i and j is

Ĉij(f ; t) =
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where s̃i(f ; t) is the Fourier transform of the strain time
series in detector i starting at time t, �ij(f) is the
normalized overlap reduction function (ORF) [13, 23]
between detectors i and j, T is the duration over which
the Fourier transform is taken, and S0(f) is the spec-
tral shape for a SGWB that is flat in energy density,
S0(f) = 3H
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where Pi(f ; t) is the one-sided power spectral density
(PSD) of detector i between times t and t + T , and �f is
the frequency resolution.

In general, Eq. (3) and Eq. (4) are estimated for many
short time-segments of T = 192 s and these segments are
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where k indexes the time segments. For a set of Nt time
segments starting at times {tk}

k=Nt
k=1 , we have defined

Ĉij,k(f) = Ĉij(f ; tk), and likewise for its variance.
It is worth considering the expectation value of the

estimator, hĈij(f)i, in some detail (we will suppress the
time-dependence for brevity). Let us assume that s̃i(f)
can be written as

s̃i(f) = h̃i(f) + ñi(f), (7)

where ñi(f) is the Fourier transform of the instrument
noise in detector i, and
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is the total GW signal in detector i located at ~xi. Here
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traveling in direction r̂ with polarization A, and h̃A(f, r̂)
is the Fourier amplitude of that plane wave. Consequently,
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If we assume that the SGWB is isotropic, Gaussian, sta-
tionary and unpolarized, then it is well-described by a
single power spectral density Sgw(f),
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where �T (f � f
0) is the finite-time approximation to the

dirac delta function, and Sgw(f) is related to the dimen-
sionless energy density as follows

Sgw(f) =
3H

2
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f3
. (11)

Note that, for the existing detectors, the overlap reduction
function, �ij(f), accounts for all the geometric factors
that come into play when cross-correlating data from
di↵erent detectors [13].

Combining Eqs. (9)–(11), substituting into Eq. (3), and
then including the time-dependence again, we find

hĈij(f ; t)i = ⌦gw(f) + 2 Re
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T�ij(f)S0(f)
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where we have assumed that the GW signal and the
intrinsic noise are uncorrelated, hh̃

⇤
i
(f)ñj(f 0)i = 0, and

that the noise in each frequency bin is independent. It is
clear from (12) that in the absence of correlated noise, i.e.
hñ

⇤
i
(f)ñj(f)i = 0, hĈij(f)i is an estimator for ⌦gw(f).

However, this is not the case when hñ
⇤
i
(f)ñj(f)i 6= 0.

Schumann resonances are a potential source of correl-
ated magnetic noise. An estimate of the correlated mag-
netic noise contribution in the isotropic SGWB search
using data from Advanced LIGO’s first and second ob-
serving runs indicates that it is not yet an issue for current
searches [24]. However, as detectors grow more sensit-
ive, this will likely change, and the magnetic noise budget
could dominate the signal [16]. Hence, a careful treatment
of correlated magnetic noise is of vital importance.

III. SIMULATING GW DATA WITH
CORRELATED NOISE

In this section, we discuss how we simulate GW data
that is contaminated with correlated noise due to the Schu-
mann resonances. In IIIA we discuss the Schumann res-
onances and their general properties. In III B we present
a model for the coupling of magnetic fields into GW de-
tectors. In III C we show how to simulate multiple data
streams that have correlated Gaussian noise components,
and then we apply that method to our specific use case.

A. Schumann Resonances

In 1952, Schumann predicted the existence of global
extremely low frequency (ELF) peaks in the electromag-
netic field of the Earth, which were subsequently ob-
served [25, 26]. The resonances are eigenmodes of the
conducting spherical cavity formed by the surface of the
Earth and its ionosphere, and are excited by lightning
discharges [27]. The first harmonic, which corresponds
to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
detector. We can clearly see the first five harmonics of
the Schumann resonances. There is a diurnal variation in
the amplitude of the Schumann resonances that corres-
ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
time of year and the location [27, 29, 30]. What is shown
in Figure 1 represents a trough in the height of the peaks
over the course of the day at Virgo. Despite this diurnal
variation, we will model the spectrum as stationary in
this paper for simplicity.

Figure 1. Power spectral density of magnetometer data near
the Advanced Virgo detector. The blue is the inverse-averaged
power spectral density for many 32 s chunks of data for the
period from 00:00–02:00 UTC on July 9th, 2019. We use
inverse averaging to account for possible magnetic transients
that occur during this time. We produce the orange curve
by removing the large, narrow spectral features and applying
a smoothing filter. We can clearly see five harmonics of the
Schumann resonances. The large, narrow spectral features are
caused by local magnetic noise on site at Virgo.

The Schumann resonances, being global excitations, are
coherent across the O(1000 km) distance scales between
GW detectors [19, 20]. We model the time-series induced
in magnetometers from the Schumann resonances as Gaus-
sian, stationary, and unpolarized, with a power-spectral
density that can be described by a set of Lorentzians
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Note that, for the existing detectors, the overlap reduction
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that come into play when cross-correlating data from
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Schumann resonances are a potential source of correl-
ated magnetic noise. An estimate of the correlated mag-
netic noise contribution in the isotropic SGWB search
using data from Advanced LIGO’s first and second ob-
serving runs indicates that it is not yet an issue for current
searches [24]. However, as detectors grow more sensit-
ive, this will likely change, and the magnetic noise budget
could dominate the signal [16]. Hence, a careful treatment
of correlated magnetic noise is of vital importance.

III. SIMULATING GW DATA WITH
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In this section, we discuss how we simulate GW data
that is contaminated with correlated noise due to the Schu-
mann resonances. In IIIA we discuss the Schumann res-
onances and their general properties. In III B we present
a model for the coupling of magnetic fields into GW de-
tectors. In III C we show how to simulate multiple data
streams that have correlated Gaussian noise components,
and then we apply that method to our specific use case.
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In 1952, Schumann predicted the existence of global
extremely low frequency (ELF) peaks in the electromag-
netic field of the Earth, which were subsequently ob-
served [25, 26]. The resonances are eigenmodes of the
conducting spherical cavity formed by the surface of the
Earth and its ionosphere, and are excited by lightning
discharges [27]. The first harmonic, which corresponds
to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
detector. We can clearly see the first five harmonics of
the Schumann resonances. There is a diurnal variation in
the amplitude of the Schumann resonances that corres-
ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
time of year and the location [27, 29, 30]. What is shown
in Figure 1 represents a trough in the height of the peaks
over the course of the day at Virgo. Despite this diurnal
variation, we will model the spectrum as stationary in
this paper for simplicity.

Figure 1. Power spectral density of magnetometer data near
the Advanced Virgo detector. The blue is the inverse-averaged
power spectral density for many 32 s chunks of data for the
period from 00:00–02:00 UTC on July 9th, 2019. We use
inverse averaging to account for possible magnetic transients
that occur during this time. We produce the orange curve
by removing the large, narrow spectral features and applying
a smoothing filter. We can clearly see five harmonics of the
Schumann resonances. The large, narrow spectral features are
caused by local magnetic noise on site at Virgo.

The Schumann resonances, being global excitations, are
coherent across the O(1000 km) distance scales between
GW detectors [19, 20]. We model the time-series induced
in magnetometers from the Schumann resonances as Gaus-
sian, stationary, and unpolarized, with a power-spectral
density that can be described by a set of Lorentzians

is an estimator for 

3

traveling in direction r̂ with polarization A, and h̃A(f, r̂)
is the Fourier amplitude of that plane wave. Consequently,

hs̃
⇤
i
(f)s̃j(f

0)i = hh̃
⇤
i
(f)h̃j(f

0)i + hh̃
⇤
i
(f)ñj(f
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Schumann resonances are a potential source of correl-
ated magnetic noise. An estimate of the correlated mag-
netic noise contribution in the isotropic SGWB search
using data from Advanced LIGO’s first and second ob-
serving runs indicates that it is not yet an issue for current
searches [24]. However, as detectors grow more sensit-
ive, this will likely change, and the magnetic noise budget
could dominate the signal [16]. Hence, a careful treatment
of correlated magnetic noise is of vital importance.

III. SIMULATING GW DATA WITH
CORRELATED NOISE

In this section, we discuss how we simulate GW data
that is contaminated with correlated noise due to the Schu-
mann resonances. In IIIA we discuss the Schumann res-
onances and their general properties. In III B we present
a model for the coupling of magnetic fields into GW de-
tectors. In III C we show how to simulate multiple data
streams that have correlated Gaussian noise components,
and then we apply that method to our specific use case.

A. Schumann Resonances

In 1952, Schumann predicted the existence of global
extremely low frequency (ELF) peaks in the electromag-
netic field of the Earth, which were subsequently ob-
served [25, 26]. The resonances are eigenmodes of the
conducting spherical cavity formed by the surface of the
Earth and its ionosphere, and are excited by lightning
discharges [27]. The first harmonic, which corresponds
to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
detector. We can clearly see the first five harmonics of
the Schumann resonances. There is a diurnal variation in
the amplitude of the Schumann resonances that corres-
ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
time of year and the location [27, 29, 30]. What is shown
in Figure 1 represents a trough in the height of the peaks
over the course of the day at Virgo. Despite this diurnal
variation, we will model the spectrum as stationary in
this paper for simplicity.

Figure 1. Power spectral density of magnetometer data near
the Advanced Virgo detector. The blue is the inverse-averaged
power spectral density for many 32 s chunks of data for the
period from 00:00–02:00 UTC on July 9th, 2019. We use
inverse averaging to account for possible magnetic transients
that occur during this time. We produce the orange curve
by removing the large, narrow spectral features and applying
a smoothing filter. We can clearly see five harmonics of the
Schumann resonances. The large, narrow spectral features are
caused by local magnetic noise on site at Virgo.

The Schumann resonances, being global excitations, are
coherent across the O(1000 km) distance scales between
GW detectors [19, 20]. We model the time-series induced
in magnetometers from the Schumann resonances as Gaus-
sian, stationary, and unpolarized, with a power-spectral
density that can be described by a set of Lorentzians
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a model for the coupling of magnetic fields into GW de-
tectors. In III C we show how to simulate multiple data
streams that have correlated Gaussian noise components,
and then we apply that method to our specific use case.
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to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
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ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
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that occur during this time. We produce the orange curve
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onances and their general properties. In III B we present
a model for the coupling of magnetic fields into GW de-
tectors. In III C we show how to simulate multiple data
streams that have correlated Gaussian noise components,
and then we apply that method to our specific use case.
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netic field of the Earth, which were subsequently ob-
served [25, 26]. The resonances are eigenmodes of the
conducting spherical cavity formed by the surface of the
Earth and its ionosphere, and are excited by lightning
discharges [27]. The first harmonic, which corresponds
to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
detector. We can clearly see the first five harmonics of
the Schumann resonances. There is a diurnal variation in
the amplitude of the Schumann resonances that corres-
ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
time of year and the location [27, 29, 30]. What is shown
in Figure 1 represents a trough in the height of the peaks
over the course of the day at Virgo. Despite this diurnal
variation, we will model the spectrum as stationary in
this paper for simplicity.
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the Advanced Virgo detector. The blue is the inverse-averaged
power spectral density for many 32 s chunks of data for the
period from 00:00–02:00 UTC on July 9th, 2019. We use
inverse averaging to account for possible magnetic transients
that occur during this time. We produce the orange curve
by removing the large, narrow spectral features and applying
a smoothing filter. We can clearly see five harmonics of the
Schumann resonances. The large, narrow spectral features are
caused by local magnetic noise on site at Virgo.

The Schumann resonances, being global excitations, are
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ated magnetic noise. An estimate of the correlated mag-
netic noise contribution in the isotropic SGWB search
using data from Advanced LIGO’s first and second ob-
serving runs indicates that it is not yet an issue for current
searches [24]. However, as detectors grow more sensit-
ive, this will likely change, and the magnetic noise budget
could dominate the signal [16]. Hence, a careful treatment
of correlated magnetic noise is of vital importance.

III. SIMULATING GW DATA WITH
CORRELATED NOISE

In this section, we discuss how we simulate GW data
that is contaminated with correlated noise due to the Schu-
mann resonances. In IIIA we discuss the Schumann res-
onances and their general properties. In III B we present
a model for the coupling of magnetic fields into GW de-
tectors. In III C we show how to simulate multiple data
streams that have correlated Gaussian noise components,
and then we apply that method to our specific use case.

A. Schumann Resonances

In 1952, Schumann predicted the existence of global
extremely low frequency (ELF) peaks in the electromag-
netic field of the Earth, which were subsequently ob-
served [25, 26]. The resonances are eigenmodes of the
conducting spherical cavity formed by the surface of the
Earth and its ionosphere, and are excited by lightning
discharges [27]. The first harmonic, which corresponds
to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
detector. We can clearly see the first five harmonics of
the Schumann resonances. There is a diurnal variation in
the amplitude of the Schumann resonances that corres-
ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
time of year and the location [27, 29, 30]. What is shown
in Figure 1 represents a trough in the height of the peaks
over the course of the day at Virgo. Despite this diurnal
variation, we will model the spectrum as stationary in
this paper for simplicity.

Figure 1. Power spectral density of magnetometer data near
the Advanced Virgo detector. The blue is the inverse-averaged
power spectral density for many 32 s chunks of data for the
period from 00:00–02:00 UTC on July 9th, 2019. We use
inverse averaging to account for possible magnetic transients
that occur during this time. We produce the orange curve
by removing the large, narrow spectral features and applying
a smoothing filter. We can clearly see five harmonics of the
Schumann resonances. The large, narrow spectral features are
caused by local magnetic noise on site at Virgo.

The Schumann resonances, being global excitations, are
coherent across the O(1000 km) distance scales between
GW detectors [19, 20]. We model the time-series induced
in magnetometers from the Schumann resonances as Gaus-
sian, stationary, and unpolarized, with a power-spectral
density that can be described by a set of Lorentzians
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serving runs indicates that it is not yet an issue for current
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ive, this will likely change, and the magnetic noise budget
could dominate the signal [16]. Hence, a careful treatment
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a model for the coupling of magnetic fields into GW de-
tectors. In III C we show how to simulate multiple data
streams that have correlated Gaussian noise components,
and then we apply that method to our specific use case.
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netic field of the Earth, which were subsequently ob-
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Earth and its ionosphere, and are excited by lightning
discharges [27]. The first harmonic, which corresponds
to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
detector. We can clearly see the first five harmonics of
the Schumann resonances. There is a diurnal variation in
the amplitude of the Schumann resonances that corres-
ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
time of year and the location [27, 29, 30]. What is shown
in Figure 1 represents a trough in the height of the peaks
over the course of the day at Virgo. Despite this diurnal
variation, we will model the spectrum as stationary in
this paper for simplicity.
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Schumann resonances. The large, narrow spectral features are
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(f)ñj(f

0)i. (9)

If we assume that the SGWB is isotropic, Gaussian, sta-
tionary and unpolarized, then it is well-described by a
single power spectral density Sgw(f),

hh̃
⇤
i
(f)h̃j(f

0)i =
1

2
�T (f � f

0)�ij(f)Sgw(f), (10)

where �T (f � f
0) is the finite-time approximation to the

dirac delta function, and Sgw(f) is related to the dimen-
sionless energy density as follows

Sgw(f) =
3H

2
0

10⇡2

⌦gw(f)

f3
. (11)

Note that, for the existing detectors, the overlap reduction
function, �ij(f), accounts for all the geometric factors
that come into play when cross-correlating data from
di↵erent detectors [13].

Combining Eqs. (9)–(11), substituting into Eq. (3), and
then including the time-dependence again, we find
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netic noise contribution in the isotropic SGWB search
using data from Advanced LIGO’s first and second ob-
serving runs indicates that it is not yet an issue for current
searches [24]. However, as detectors grow more sensit-
ive, this will likely change, and the magnetic noise budget
could dominate the signal [16]. Hence, a careful treatment
of correlated magnetic noise is of vital importance.
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mann resonances. In IIIA we discuss the Schumann res-
onances and their general properties. In III B we present
a model for the coupling of magnetic fields into GW de-
tectors. In III C we show how to simulate multiple data
streams that have correlated Gaussian noise components,
and then we apply that method to our specific use case.

A. Schumann Resonances

In 1952, Schumann predicted the existence of global
extremely low frequency (ELF) peaks in the electromag-
netic field of the Earth, which were subsequently ob-
served [25, 26]. The resonances are eigenmodes of the
conducting spherical cavity formed by the surface of the
Earth and its ionosphere, and are excited by lightning
discharges [27]. The first harmonic, which corresponds
to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
detector. We can clearly see the first five harmonics of
the Schumann resonances. There is a diurnal variation in
the amplitude of the Schumann resonances that corres-
ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
time of year and the location [27, 29, 30]. What is shown
in Figure 1 represents a trough in the height of the peaks
over the course of the day at Virgo. Despite this diurnal
variation, we will model the spectrum as stationary in
this paper for simplicity.

Figure 1. Power spectral density of magnetometer data near
the Advanced Virgo detector. The blue is the inverse-averaged
power spectral density for many 32 s chunks of data for the
period from 00:00–02:00 UTC on July 9th, 2019. We use
inverse averaging to account for possible magnetic transients
that occur during this time. We produce the orange curve
by removing the large, narrow spectral features and applying
a smoothing filter. We can clearly see five harmonics of the
Schumann resonances. The large, narrow spectral features are
caused by local magnetic noise on site at Virgo.

The Schumann resonances, being global excitations, are
coherent across the O(1000 km) distance scales between
GW detectors [19, 20]. We model the time-series induced
in magnetometers from the Schumann resonances as Gaus-
sian, stationary, and unpolarized, with a power-spectral
density that can be described by a set of Lorentzians
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hñ

⇤
i
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Schumann resonances are a potential source of correl-
ated magnetic noise. An estimate of the correlated mag-
netic noise contribution in the isotropic SGWB search
using data from Advanced LIGO’s first and second ob-
serving runs indicates that it is not yet an issue for current
searches [24]. However, as detectors grow more sensit-
ive, this will likely change, and the magnetic noise budget
could dominate the signal [16]. Hence, a careful treatment
of correlated magnetic noise is of vital importance.

III. SIMULATING GW DATA WITH
CORRELATED NOISE

In this section, we discuss how we simulate GW data
that is contaminated with correlated noise due to the Schu-
mann resonances. In IIIA we discuss the Schumann res-
onances and their general properties. In III B we present
a model for the coupling of magnetic fields into GW de-
tectors. In III C we show how to simulate multiple data
streams that have correlated Gaussian noise components,
and then we apply that method to our specific use case.

A. Schumann Resonances

In 1952, Schumann predicted the existence of global
extremely low frequency (ELF) peaks in the electromag-
netic field of the Earth, which were subsequently ob-
served [25, 26]. The resonances are eigenmodes of the
conducting spherical cavity formed by the surface of the
Earth and its ionosphere, and are excited by lightning
discharges [27]. The first harmonic, which corresponds
to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
detector. We can clearly see the first five harmonics of
the Schumann resonances. There is a diurnal variation in
the amplitude of the Schumann resonances that corres-
ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
time of year and the location [27, 29, 30]. What is shown
in Figure 1 represents a trough in the height of the peaks
over the course of the day at Virgo. Despite this diurnal
variation, we will model the spectrum as stationary in
this paper for simplicity.

Figure 1. Power spectral density of magnetometer data near
the Advanced Virgo detector. The blue is the inverse-averaged
power spectral density for many 32 s chunks of data for the
period from 00:00–02:00 UTC on July 9th, 2019. We use
inverse averaging to account for possible magnetic transients
that occur during this time. We produce the orange curve
by removing the large, narrow spectral features and applying
a smoothing filter. We can clearly see five harmonics of the
Schumann resonances. The large, narrow spectral features are
caused by local magnetic noise on site at Virgo.

The Schumann resonances, being global excitations, are
coherent across the O(1000 km) distance scales between
GW detectors [19, 20]. We model the time-series induced
in magnetometers from the Schumann resonances as Gaus-
sian, stationary, and unpolarized, with a power-spectral
density that can be described by a set of Lorentzians
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method provides a check on whether a proposed SGWB
signal is consistent with an isotropic SGWB or if it is
more consistent with environmental disturbances. Such a
method o↵ers complementary information to approaches
that attempt to subtract or mitigate correlated noise.

In this paper, we take a di↵erent tact. We model the
contribution of correlated magnetic noise from Schumann
resonances to the frequency-domain SGWB estimator
used by most searches [22]. We propose a method to sim-
ultaneously detect correlated magnetic noise and a SGWB
using local on-site magnetometers and current SGWB
search data products. We then demonstrate this method
using realistic time-domain and frequency-domain syn-
thetic data sets with varying levels of correlated magnetic
noise. Such a method o↵ers an alternative to Wiener filer-
ing, but could also be used on data that has already had
Wiener filtering subtraction applied, given that Wiener
filtering in the low signal-to-noise regime can result in
imperfect subtraction [20].

The rest of this paper is organized as follows. In Sec-
tion II, we introduce the cross-correlation statistic used in
SGWB searches, and highlight complications introduced
by correlated detector noise. In Section III, we explain
the Schumann resonances and their coupling to the detect-
ors, and we present the way we model this coupling. We
then present a method of simulating synthetic time series
data that includes a correlated magnetic spectrum in a
multi-detector network. In Section IV, we discuss a model
for the SGWB search statistic that includes correlated
magnetic noise, and demonstrate how we use that model
to co-detect the presence of correlated magnetic noise and
a SGWB. We present results on synthetic data in Sec-
tion V, and finish with a brief discussion and suggestions
for future work in Section VI.

II. SGWB AND SEARCH METHODS

If we assume the SGWB is isotropic, Gaussian, station-
ary, and unpolarized, then it is fully characterized by the
dimensionless energy density per logarithmic frequency
interval

⌦gw(f) =
1

⇢c

d⇢gw(f)

dln(f)
, (1)

where d⇢gw is the GW energy density in the frequency
interval ln f to ln f +d ln f , and ⇢c = 3H2
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2
/(8⇡G) is the

critical energy density to close the Universe. It is common
to model the SGWB spectrum as a power law:

⌦gw(f) = ⌦↵

✓
f

fref

◆↵
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where ⌦↵ is the amplitude at a reference frequency, fref ,
and ↵ is the spectral index. We will use fref = 25 Hz.

Unresolved CBCs give a background spectrum with
↵ = 2/3; slow roll inflation models and cosmic strings
predict ↵ = 0. It is also common to consider a model

that is flat in GW power, which corresponds to ↵ = 3,
to mimic signals like those from phase transitions and
supernovae [8]. Recent estimates suggest that the SGWB
could be detected by the Advanced LIGO and Advanced
Virgo detector network once these detectors reach design
sensitivity and integrate for O(years) [7].

In what follows, we consider a SGWB search that uses a
cross-correlation estimator that is optimal for a Gaussian,
stationary, unpolarized and isotropic background. Our
estimator, Ĉij(f), for the SGWB measured from detectors
i and j is

Ĉij(f ; t) =
2
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i
(f ; t)s̃j(f ; t)]

�ij(f)S0(f)
, (3)

where s̃i(f ; t) is the Fourier transform of the strain time
series in detector i starting at time t, �ij(f) is the
normalized overlap reduction function (ORF) [13, 23]
between detectors i and j, T is the duration over which
the Fourier transform is taken, and S0(f) is the spec-
tral shape for a SGWB that is flat in energy density,
S0(f) = 3H

2
0/(10⇡

2
f
3).

In the limit where the total GW strain amplitude in
detector i, h̃i(f), is much less than the intrinsic detector
noise, ñi(f), the variance of Ĉij(f ; t) is given by
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where Pi(f ; t) is the one-sided power spectral density
(PSD) of detector i between times t and t + T , and �f is
the frequency resolution.

In general, Eq. (3) and Eq. (4) are estimated for many
short time-segments of T = 192 s and these segments are
optimally combined in a post-processing step given by
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where k indexes the time segments. For a set of Nt time
segments starting at times {tk}

k=Nt
k=1 , we have defined

Ĉij,k(f) = Ĉij(f ; tk), and likewise for its variance.
It is worth considering the expectation value of the

estimator, hĈij(f)i, in some detail (we will suppress the
time-dependence for brevity). Let us assume that s̃i(f)
can be written as

s̃i(f) = h̃i(f) + ñi(f), (7)

where ñi(f) is the Fourier transform of the instrument
noise in detector i, and
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is the total GW signal in detector i located at ~xi. Here
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(f, r̂) is the response of detector i to a plane-wave
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method provides a check on whether a proposed SGWB
signal is consistent with an isotropic SGWB or if it is
more consistent with environmental disturbances. Such a
method o↵ers complementary information to approaches
that attempt to subtract or mitigate correlated noise.

In this paper, we take a di↵erent tact. We model the
contribution of correlated magnetic noise from Schumann
resonances to the frequency-domain SGWB estimator
used by most searches [22]. We propose a method to sim-
ultaneously detect correlated magnetic noise and a SGWB
using local on-site magnetometers and current SGWB
search data products. We then demonstrate this method
using realistic time-domain and frequency-domain syn-
thetic data sets with varying levels of correlated magnetic
noise. Such a method o↵ers an alternative to Wiener filer-
ing, but could also be used on data that has already had
Wiener filtering subtraction applied, given that Wiener
filtering in the low signal-to-noise regime can result in
imperfect subtraction [20].

The rest of this paper is organized as follows. In Sec-
tion II, we introduce the cross-correlation statistic used in
SGWB searches, and highlight complications introduced
by correlated detector noise. In Section III, we explain
the Schumann resonances and their coupling to the detect-
ors, and we present the way we model this coupling. We
then present a method of simulating synthetic time series
data that includes a correlated magnetic spectrum in a
multi-detector network. In Section IV, we discuss a model
for the SGWB search statistic that includes correlated
magnetic noise, and demonstrate how we use that model
to co-detect the presence of correlated magnetic noise and
a SGWB. We present results on synthetic data in Sec-
tion V, and finish with a brief discussion and suggestions
for future work in Section VI.

II. SGWB AND SEARCH METHODS

If we assume the SGWB is isotropic, Gaussian, station-
ary, and unpolarized, then it is fully characterized by the
dimensionless energy density per logarithmic frequency
interval

⌦gw(f) =
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where d⇢gw is the GW energy density in the frequency
interval ln f to ln f +d ln f , and ⇢c = 3H2
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critical energy density to close the Universe. It is common
to model the SGWB spectrum as a power law:
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where ⌦↵ is the amplitude at a reference frequency, fref ,
and ↵ is the spectral index. We will use fref = 25 Hz.

Unresolved CBCs give a background spectrum with
↵ = 2/3; slow roll inflation models and cosmic strings
predict ↵ = 0. It is also common to consider a model

that is flat in GW power, which corresponds to ↵ = 3,
to mimic signals like those from phase transitions and
supernovae [8]. Recent estimates suggest that the SGWB
could be detected by the Advanced LIGO and Advanced
Virgo detector network once these detectors reach design
sensitivity and integrate for O(years) [7].

In what follows, we consider a SGWB search that uses a
cross-correlation estimator that is optimal for a Gaussian,
stationary, unpolarized and isotropic background. Our
estimator, Ĉij(f), for the SGWB measured from detectors
i and j is

Ĉij(f ; t) =
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where s̃i(f ; t) is the Fourier transform of the strain time
series in detector i starting at time t, �ij(f) is the
normalized overlap reduction function (ORF) [13, 23]
between detectors i and j, T is the duration over which
the Fourier transform is taken, and S0(f) is the spec-
tral shape for a SGWB that is flat in energy density,
S0(f) = 3H
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where Pi(f ; t) is the one-sided power spectral density
(PSD) of detector i between times t and t + T , and �f is
the frequency resolution.

In general, Eq. (3) and Eq. (4) are estimated for many
short time-segments of T = 192 s and these segments are
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where k indexes the time segments. For a set of Nt time
segments starting at times {tk}

k=Nt
k=1 , we have defined

Ĉij,k(f) = Ĉij(f ; tk), and likewise for its variance.
It is worth considering the expectation value of the

estimator, hĈij(f)i, in some detail (we will suppress the
time-dependence for brevity). Let us assume that s̃i(f)
can be written as

s̃i(f) = h̃i(f) + ñi(f), (7)

where ñi(f) is the Fourier transform of the instrument
noise in detector i, and
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traveling in direction r̂ with polarization A, and h̃A(f, r̂)
is the Fourier amplitude of that plane wave. Consequently,
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(f)ñj(f

0)i

+hñ
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If we assume that the SGWB is isotropic, Gaussian, sta-
tionary and unpolarized, then it is well-described by a
single power spectral density Sgw(f),

hh̃
⇤
i
(f)h̃j(f

0)i =
1

2
�T (f � f
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where �T (f � f
0) is the finite-time approximation to the

dirac delta function, and Sgw(f) is related to the dimen-
sionless energy density as follows

Sgw(f) =
3H
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. (11)

Note that, for the existing detectors, the overlap reduction
function, �ij(f), accounts for all the geometric factors
that come into play when cross-correlating data from
di↵erent detectors [13].

Combining Eqs. (9)–(11), substituting into Eq. (3), and
then including the time-dependence again, we find

hĈij(f ; t)i = ⌦gw(f) + 2 Re
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hñ

⇤
i
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where we have assumed that the GW signal and the
intrinsic noise are uncorrelated, hh̃

⇤
i
(f)ñj(f 0)i = 0, and

that the noise in each frequency bin is independent. It is
clear from (12) that in the absence of correlated noise, i.e.
hñ

⇤
i
(f)ñj(f)i = 0, hĈij(f)i is an estimator for ⌦gw(f).

However, this is not the case when hñ
⇤
i
(f)ñj(f)i 6= 0.

Schumann resonances are a potential source of correl-
ated magnetic noise. An estimate of the correlated mag-
netic noise contribution in the isotropic SGWB search
using data from Advanced LIGO’s first and second ob-
serving runs indicates that it is not yet an issue for current
searches [24]. However, as detectors grow more sensit-
ive, this will likely change, and the magnetic noise budget
could dominate the signal [16]. Hence, a careful treatment
of correlated magnetic noise is of vital importance.

III. SIMULATING GW DATA WITH
CORRELATED NOISE

In this section, we discuss how we simulate GW data
that is contaminated with correlated noise due to the Schu-
mann resonances. In IIIA we discuss the Schumann res-
onances and their general properties. In III B we present
a model for the coupling of magnetic fields into GW de-
tectors. In III C we show how to simulate multiple data
streams that have correlated Gaussian noise components,
and then we apply that method to our specific use case.

A. Schumann Resonances

In 1952, Schumann predicted the existence of global
extremely low frequency (ELF) peaks in the electromag-
netic field of the Earth, which were subsequently ob-
served [25, 26]. The resonances are eigenmodes of the
conducting spherical cavity formed by the surface of the
Earth and its ionosphere, and are excited by lightning
discharges [27]. The first harmonic, which corresponds
to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
detector. We can clearly see the first five harmonics of
the Schumann resonances. There is a diurnal variation in
the amplitude of the Schumann resonances that corres-
ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
time of year and the location [27, 29, 30]. What is shown
in Figure 1 represents a trough in the height of the peaks
over the course of the day at Virgo. Despite this diurnal
variation, we will model the spectrum as stationary in
this paper for simplicity.

Figure 1. Power spectral density of magnetometer data near
the Advanced Virgo detector. The blue is the inverse-averaged
power spectral density for many 32 s chunks of data for the
period from 00:00–02:00 UTC on July 9th, 2019. We use
inverse averaging to account for possible magnetic transients
that occur during this time. We produce the orange curve
by removing the large, narrow spectral features and applying
a smoothing filter. We can clearly see five harmonics of the
Schumann resonances. The large, narrow spectral features are
caused by local magnetic noise on site at Virgo.

The Schumann resonances, being global excitations, are
coherent across the O(1000 km) distance scales between
GW detectors [19, 20]. We model the time-series induced
in magnetometers from the Schumann resonances as Gaus-
sian, stationary, and unpolarized, with a power-spectral
density that can be described by a set of Lorentzians
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⇤
i
(f)h̃j(f

0)i + hñ
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Note that, for the existing detectors, the overlap reduction
function, �ij(f), accounts for all the geometric factors
that come into play when cross-correlating data from
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Schumann resonances are a potential source of correl-
ated magnetic noise. An estimate of the correlated mag-
netic noise contribution in the isotropic SGWB search
using data from Advanced LIGO’s first and second ob-
serving runs indicates that it is not yet an issue for current
searches [24]. However, as detectors grow more sensit-
ive, this will likely change, and the magnetic noise budget
could dominate the signal [16]. Hence, a careful treatment
of correlated magnetic noise is of vital importance.

III. SIMULATING GW DATA WITH
CORRELATED NOISE

In this section, we discuss how we simulate GW data
that is contaminated with correlated noise due to the Schu-
mann resonances. In IIIA we discuss the Schumann res-
onances and their general properties. In III B we present
a model for the coupling of magnetic fields into GW de-
tectors. In III C we show how to simulate multiple data
streams that have correlated Gaussian noise components,
and then we apply that method to our specific use case.

A. Schumann Resonances

In 1952, Schumann predicted the existence of global
extremely low frequency (ELF) peaks in the electromag-
netic field of the Earth, which were subsequently ob-
served [25, 26]. The resonances are eigenmodes of the
conducting spherical cavity formed by the surface of the
Earth and its ionosphere, and are excited by lightning
discharges [27]. The first harmonic, which corresponds
to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
detector. We can clearly see the first five harmonics of
the Schumann resonances. There is a diurnal variation in
the amplitude of the Schumann resonances that corres-
ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
time of year and the location [27, 29, 30]. What is shown
in Figure 1 represents a trough in the height of the peaks
over the course of the day at Virgo. Despite this diurnal
variation, we will model the spectrum as stationary in
this paper for simplicity.

Figure 1. Power spectral density of magnetometer data near
the Advanced Virgo detector. The blue is the inverse-averaged
power spectral density for many 32 s chunks of data for the
period from 00:00–02:00 UTC on July 9th, 2019. We use
inverse averaging to account for possible magnetic transients
that occur during this time. We produce the orange curve
by removing the large, narrow spectral features and applying
a smoothing filter. We can clearly see five harmonics of the
Schumann resonances. The large, narrow spectral features are
caused by local magnetic noise on site at Virgo.

The Schumann resonances, being global excitations, are
coherent across the O(1000 km) distance scales between
GW detectors [19, 20]. We model the time-series induced
in magnetometers from the Schumann resonances as Gaus-
sian, stationary, and unpolarized, with a power-spectral
density that can be described by a set of Lorentzians
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⇤
i
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netic noise contribution in the isotropic SGWB search
using data from Advanced LIGO’s first and second ob-
serving runs indicates that it is not yet an issue for current
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and then we apply that method to our specific use case.

A. Schumann Resonances

In 1952, Schumann predicted the existence of global
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netic field of the Earth, which were subsequently ob-
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Earth and its ionosphere, and are excited by lightning
discharges [27]. The first harmonic, which corresponds
to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
detector. We can clearly see the first five harmonics of
the Schumann resonances. There is a diurnal variation in
the amplitude of the Schumann resonances that corres-
ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
time of year and the location [27, 29, 30]. What is shown
in Figure 1 represents a trough in the height of the peaks
over the course of the day at Virgo. Despite this diurnal
variation, we will model the spectrum as stationary in
this paper for simplicity.
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power spectral density for many 32 s chunks of data for the
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that occur during this time. We produce the orange curve
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power spectral density for many 32 s chunks of data for the
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that occur during this time. We produce the orange curve
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(f)ñj(f

0)i. (9)

If we assume that the SGWB is isotropic, Gaussian, sta-
tionary and unpolarized, then it is well-described by a
single power spectral density Sgw(f),

hh̃
⇤
i
(f)h̃j(f

0)i =
1

2
�T (f � f

0)�ij(f)Sgw(f), (10)

where �T (f � f
0) is the finite-time approximation to the

dirac delta function, and Sgw(f) is related to the dimen-
sionless energy density as follows

Sgw(f) =
3H

2
0

10⇡2

⌦gw(f)

f3
. (11)

Note that, for the existing detectors, the overlap reduction
function, �ij(f), accounts for all the geometric factors
that come into play when cross-correlating data from
di↵erent detectors [13].

Combining Eqs. (9)–(11), substituting into Eq. (3), and
then including the time-dependence again, we find
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to the circumference of the Earth, is at 7.8 Hz, and the
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each consecutive peak being weaker than the previous one.
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low-noise magnetometers on-site at the Advanced Virgo
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ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
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serving runs indicates that it is not yet an issue for current
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mann resonances. In IIIA we discuss the Schumann res-
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a model for the coupling of magnetic fields into GW de-
tectors. In III C we show how to simulate multiple data
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netic field of the Earth, which were subsequently ob-
served [25, 26]. The resonances are eigenmodes of the
conducting spherical cavity formed by the surface of the
Earth and its ionosphere, and are excited by lightning
discharges [27]. The first harmonic, which corresponds
to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
detector. We can clearly see the first five harmonics of
the Schumann resonances. There is a diurnal variation in
the amplitude of the Schumann resonances that corres-
ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
time of year and the location [27, 29, 30]. What is shown
in Figure 1 represents a trough in the height of the peaks
over the course of the day at Virgo. Despite this diurnal
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this paper for simplicity.

Figure 1. Power spectral density of magnetometer data near
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power spectral density for many 32 s chunks of data for the
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that occur during this time. We produce the orange curve
by removing the large, narrow spectral features and applying
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netic field of the Earth, which were subsequently ob-
served [25, 26]. The resonances are eigenmodes of the
conducting spherical cavity formed by the surface of the
Earth and its ionosphere, and are excited by lightning
discharges [27]. The first harmonic, which corresponds
to the circumference of the Earth, is at 7.8 Hz, and the
subsequent harmonics are at 14 Hz, 20.8 Hz and 27.3 Hz.
The first mode has the strongest resonance peak, with
each consecutive peak being weaker than the previous one.
In Figure 1, we show the power spectral density seen in
low-noise magnetometers on-site at the Advanced Virgo
detector. We can clearly see the first five harmonics of
the Schumann resonances. There is a diurnal variation in
the amplitude of the Schumann resonances that corres-
ponds to electrical storms that start at similar times and
places each day [28, 29]. The amplitude of the resonance
peaks can vary by as much as a factor of two between the
loudest and quietest times of the day, depending on the
time of year and the location [27, 29, 30]. What is shown
in Figure 1 represents a trough in the height of the peaks
over the course of the day at Virgo. Despite this diurnal
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the Advanced Virgo detector. The blue is the inverse-averaged
power spectral density for many 32 s chunks of data for the
period from 00:00–02:00 UTC on July 9th, 2019. We use
inverse averaging to account for possible magnetic transients
that occur during this time. We produce the orange curve
by removing the large, narrow spectral features and applying
a smoothing filter. We can clearly see five harmonics of the
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caused by local magnetic noise on site at Virgo.
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coherent across the O(1000 km) distance scales between
GW detectors [19, 20]. We model the time-series induced
in magnetometers from the Schumann resonances as Gaus-
sian, stationary, and unpolarized, with a power-spectral
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A. Correlated noise model

We can rewrite Eq. (11) to include separate correlated
magnetic and uncorrelated noise terms

s̃i(f) = h̃i(f) + ñ
u
i
(f) + Ti(f)m̃i(f), (20)

where ñ
u
i
(f) is the uncorrelated noise in detector i, and

Ti(f)m̃i(f) represents the correlated magnetic noise. Sub-
stituting Eq. (20) and Eq. (15) into Eq. (3) we find

hĈij(f)i = ⌦gw(f) + ⌦M,ij(f), (21)

where ⌦M,ij(f) represents the magnetic contribution,
which we derive next.

We construct the magnetic model, ⌦M,ij(f), by first
treating local magnetometer data the same way we analyze
GW strain data. We break the magnetometer data into
T = 192 s data chunks, and we calculate the cross-power
term in the same way as Eq. (3), replacing the strain
data with local magnetometer data. That is, for the data
between tk and tk + T we calculate

M̂ij,k(f) =
2

T

Re [m̃⇤
i
(f ; tk)m̃j(f ; tk)]

�ij(f)S0(f)
. (22)

We post-process the magnetometer data with the same

weights used for post-processing the GW data, viz.

M̂ij(f) =

P
k
M̂ij,k(f)��2

ij,k
(f)

P
k
�
�2
ij,k

(f)
. (23)

The weights, �ij,k(f), are the same as those expressed in
Eq. (4). They are calculated using GW strain data and
not magnetometer data. This way we treat the magne-
tometer data the same way the magnetic contribution to
the final Ĉij(f) statistic is treated. We then use this final
measurement to construct the magnetic contribution to
the model, which is given by

⌦M,ij(f) = ij

✓
f

10 Hz

◆��i��j

M̂ij(f) ⇥ 10�22
.(24)

The factor of 10�22 assumes that the units of m̃i(f) are
T Hz�1.

B. Parameter Estimation and Model Selection

We use a parameter estimation and model selection
scheme similar to those set out in [10, 11, 35]. We choose
a Gaussian likelihood for Ĉij(f) given by

ln p(Ĉij(f)|✓gw,✓M) = �
1

2

X

f

8
><

>:

h
Ĉij(f) � ⌦gw(f,✓gw) � ⌦M,ij(f,✓M)

i2

�
2
ij

(f)
+ ln

�
2⇡�

2
ij

(f)
�
9
>=

>;
, (25)

where ✓gw and ✓M represent parameters for the GW and
magnetic models respectively. In the case where we have
cross-correlation statistics for multiple baselines, we con-
sider the total likelihood to be the product of the indi-
vidual likelihoods for each pair of detectors. The resulting
multi-baseline likelihood is given by

p({Ĉij(f)}ij2pairs|✓gw,✓M) =
Y

ij2pairs

p(Ĉij(f)|✓gw,✓M).

(26)

It is straightforward to use Eq. (26) to estimate the
posterior distribution of the parameters, ✓gw and ✓M,
either by brute-force calculation or by Markov chain Monte
Carlo (MCMC) methods [36, 37].

We will also compare di↵erent models for the data using
Bayesian model selection. The four models we consider
are:

1. NOISE: ⌦M(f) = ⌦gw(f) = 0,

2. GW: ⌦M(f) = 0, ⌦gw(f) 6= 0,

3. SCHU: ⌦M(f) 6= 0, ⌦gw(f) = 0,

4. GW+SCHU: ⌦M(f) 6= 0, ⌦gw(f) 6= 0.

The form of the SGWB model, ⌦gw(f), is the power law
in Eq. (2), with ✓gw = ⌦2/3 and ↵ = 2/3 fixed. The form
of ⌦M(f) is given by Eq. (24) with ✓M = (i, j , �i, �j)
when two detectors are involved. Another set of coupling
parameters are included when a third detector is used.

We compare these models using Bayes factors [38]. For
example, comparing the GW model to the NOISE model
we have

B
GW
NOISE =

R
d✓gwp(Ĉij(f)|✓gw)p(✓gw)

N
(27)

where N is given by evaluating Eq. (25) for ⌦M(f) =
⌦gw(f) = 0, and p(✓gw) is the prior on the GW model
parameters. When B

GW
NOISE > 1 there is support for the

GW model compared to the NOISE model. A further
discussion of interpretation of Bayes factors can be found
in, e.g. chapter 3 of [14]. In this paper, we will consider
“strong” support for one model over another when ln B > 8.
The numerator of Eq. (27) is referred to as the evidence
of the GW model and is denoted ZGW. The prior distri-

magnetic contribution

Power spectral density of magnetometer 
data near aVIRGO, showing 5 harmonics 
of Schumann resonances

Meyers, Martinovic, Christensen, Sakellariadou, PRD102 (2020) 10, 102005

Mairi Sakellariadou



Joint magnetic + GWB fit

Meyers, Martinovic, Christensen, Sakellariadou, PRD102 (2020) 10, 102005

● A novel approach, complementary to the magnetic noise budget

● We model the background from the local magnetic field

● We model its coupling to the strain channel of the detectors, via 
the transfer function

4

centered around the main harmonics. We assume that
the data in two magnetometers, m̃i(f) and m̃j(f), have
a cross-spectral density given by

hm̃
⇤
i
(f)m̃j(f

0)i =
1

2
�T (f � f

0)�M

ij
(f)M(f), (13)

where M(f) is the correlated power spectral density and
�
M

ij
(f) is the magnetic analogue to the GW ORF, �ij .

This model is equivalent to Eq. (23) of [17], and we refer
the reader to that paper for an in-depth discussion of the
model.

B. Coupling to detectors

Magnetic fields can induce noise in GW detectors by
coupling to metallic materials in the suspension system of
the detector, or by inducing currents in the cabling. The
magnetic coupling is estimated by injecting magnetic noise
into the detector, and measuring the detector’s response,
and the response of the witness magnetometers near the
detectors. Peaks in the detectors’ strain channels are
related to the peaks in the magnetometer channels via
the coupling function, T (f) [15]:

ñ(f) = T (f)m̃(f). (14)

The exact frequency dependence of the coupling function
is uncertain, and it can change over the course of a long
observation run [31]. Throughout this paper, we will
assume that the coupling is constant in time, is well-
described by a power law, and is real. It takes the form

T (f) = 

✓
f

10 Hz

◆��

⇥ 10�23 strain/pT, (15)

where  is the amplitude of the coupling at 10 Hz and �

is the spectral index of the power law. In [16], they estim-
ated a coupling function with  = 2, � = 2.67 for LIGO
Hanford Observatory (LHO). Measurements made after
the second observation run (O2) found  = 0.38 at LHO
and  = 0.25 at LIGO Livingston Observatory (LLO), and
� = 3.55, 4.61 [31] at LHO and LLO respectively. Mean-
while for Virgo, post-O2 measurements indicate =0.275
and �=2.50 [32]. These measurements highlight that the
coupling functions di↵er in both shape and amplitude at
each site.

We made three simplifying assumptions in defining Eq.
(15), and relaxing each of these assumptions will need to be
explored further in future work. For example, it is known
that the strength of the coupling function can change as
a function of time due to things like routine maintenance
on the detectors. Next, recent measurements at LHO
indicate that T (f) has a more complicated frequency
structure than a simple power law. There is evidence,
for example, of a shift to a positive spectral index near
60 Hz. Finally, the assumption that T (f) is real will also

need to be revisited in the future. It could be modeled
by multiplying Eq. (15) by a frequency-dependent phasor
term, e

i�(f), but there are no measurements at present for
the frequency structure of that phase or how it behaves
as a function of time. It is possible to generalize the
simulations we perform to inject signals that relax these
assumptions and evaluate the e↵ect they have on the
method we discuss later; however, we reserve such studies
for future work.

C. Simulating data

In this section, we first discuss how we generate correl-
ated synthetic magnetometer data streams with a specific
overlap reduction function and cross-power. We then
discuss how we translate that into strain data using a
coupling function. We close with a discussion of the
parameters we use to simulate the data.

Simulating correlated Gaussian signals

Here we discuss simulating a correlated Gaussian sig-
nal with a specific M(f) and �

M

ij
(f) between detectors.

Let us consider a network of N detectors. Individual
on-site magnetometer measurements combine to give an
N -dimensional column vector, m̃(f), and the magnetic
overlap reduction functions are then a hermitian N ⇥ N

matrix, �M (f):

hm̃(f)m̃†(f 0)i =
1

2
�(f � f

0)�M (f)M(f). (16)

The individual elements of the �M (f) matrix represent
the overlap reduction function between di↵erent baselines,
evaluated at f . We then decompose �M using a Cholesky
decomposition [33]:

�M (f) = L(f)L(f)†, (17)

where L(f) is a lower-triangular matrix. We can then use
L(f) to construct the correlated magnetometer data,

m̃(f) =

r
M(f)

2
L(f)⌘̃(f), (18)

with ⌘̃(f) being white Gaussian noise with a covariance
matrix given by the identity matrix:

h⌘̃(f)⌘̃†(f 0)i = I �(f � f
0). (19)

Once we obtain m̃(f), which mimic local magnetometer
measurements, we project it onto the detectors using a
power-law coupling function as in Eq. (15). We then
inverse-Fourier transform that strain spectrum to pro-
duce h(t), and add it to Gaussian detector noise that is
uncorrelated between the separate detectors and has a
PSD consistent with design sensitivity for the Advanced
LIGO and Advanced Virgo detectors [34].

Correlated noise in the GW detectors 
induced by the magnetic fields

correlated magnetic 
power spectral density

Mairi Sakellariadou

Magnetic contribution:



Using the detector network

HL

LV

HV

C(f)

Cross correlation
Optimal combination

LIGO-Hanford

LIGO-Livingston

Virgo

Observe
h(t)

Advantages of a detector network in GWB searches
● Improves high-frequency sensitivity
● Distinguish between different polarisations

9

O3 LVK Collaboration: GWB searches

Mairi Sakellariadou

Virgo



O3 LVK Collaboration: GWB searches

Cross-correlation spectra and parameter estimation formalism

§ H, L and V baselines combined for the 
first time

§ O3 data consistent with uncorrelated, 
Gaussian noise

We fit models to O3 data using a hybrid frequentist-Bayesian 
approach:

§ Gaussian noise preferred over correlated magnetic noise

§ Gaussian noise preferred over correlated magnetic noise       
+ power law GWB

Mairi Sakellariadou

LVK Collaboration, PRD 104 (2021), 2, 022004

multi-baseline 
Gaussian likelihood



Upper limits on power-law backgrounds:

2 parameters in the power-law model:

We place upper limits on              for different priors: 

O3 LVK Collaboration: GWB searches

LVK Collaboration, PRD 104 (2021), 2, 022004
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Search for non-GR polarisations: information about theories of gravity

Mairi Sakellariadou

Alternative theories of gravity: scalar (S), vector (V), tensor (T) polarisations

Current generation (number, orientation) of detectors cannot determine polarisation of transient GW signals 
even if the LIGO detectors were more favorably-oriented  -- now nearly co-oriented -- a network of at least 6 
detectors in required to uniquely determine the polarization (2 vector, 2 scalar, 2 tensor ) modes

Bayesian method to detect and characterise the polarisation of the GWB 
Callister, et al (Sakellariadou), PRX 7  (2017) 041058

Constrains on the strain power in each 
polarisation
(log-uniform prior for               and a 
Gaussian prior on the spectral index)

There is no evidence of non-GR polarisations
The non-detection of scalar and vector polarised GW is consistent with predictions of GR

LVK Collaboration, PRD 104 (2021), 2, 022004
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Power law fHL

99% [Hz] ĈHL/10�9 fHV

99% [Hz] ĈHV /10�9 fLV

99% [Hz] ĈLV /10�9 fO1+O2+O3
99% [Hz] ĈO1+O2+O3/10�9

0 76.1 �2.1 ± 8.2 97.7 229 ± 98 88.0 �134 ± 63 76.6 1.1 ± 7.5
2/3 90.2 �3.4 ± 6.1 117.8 145 ± 60 107.3 �82 ± 40 90.6 �0.2 ± 5.6
3 282.8 �1.3 ± 0.9 375.8 9.1 ± 4.1 388.0 �4.9 ± 3.1 291.6 �0.6 ± 0.8

TABLE I. Search results for an isotropic GWB, using the optimal filter method for power law GWBs with ↵ = {0, 2/3, 3}. For
each of the three baselines IJ , we show the point estimate and 1� uncertainty for the cross-correlation estimate CIJ , along with
the frequency band from 20 Hz to f IJ

99% containing 99% of the sensitivity. We see that the HL baseline is the most sensitive, and
the HV and LV baselines are more sensitive at higher frequencies, and for larger spectral indices, due to the longer baseline. In
the last two columns, we also present the search result combining all three baselines from O3, as well as the O1 and O2 data.
As noted in the main text, the point estimates for the HV and LV are approximately 2� away from zero, however this is not
consistent with a GWB given the result of the much more sensitive HL baseline.

Uniform prior Log-uniform prior

↵ O3 O2 [43] Improvement O3 O2 [43] Improvement
0 1.7 ⇥ 10�8 6.0 ⇥ 10�8 3.6 5.8 ⇥ 10�9 3.5 ⇥ 10�8 6.0
2/3 1.2 ⇥ 10�8 4.8 ⇥ 10�8 4.0 3.4 ⇥ 10�9 3.0 ⇥ 10�8 8.8
3 1.3 ⇥ 10�9 7.9 ⇥ 10�9 5.9 3.9 ⇥ 10�10 5.1 ⇥ 10�9 13.1
Marg. 2.7 ⇥ 10�8 1.1 ⇥ 10�7 4.1 6.6 ⇥ 10�9 3.4 ⇥ 10�8 5.1

TABLE II. Upper limits at the 95% credible level on ⌦ref under the power law model for the GWB. We show upper limits
conditioned on di↵erent fixed power law indices ↵, as well as a marginalized limit obtained by integration over ↵, using a
Gaussian prior with zero mean and a standard deviation of 3.5. We show the results using a prior that is uniform in ⌦ref ,
as well as uniform in log ⌦ref . As described in the main text, the uniform upper limits are more conservative, while the log
uniform priors are more sensitive to weak signals. We also compare with the upper limits from [43], and give the improvement
factor we achieve using O3 data.

Polarization O3 O2 [43] Improvement

Tensor 6.4 ⇥ 10�9 3.2 ⇥ 10�8 5.0
Vector 7.9 ⇥ 10�9 2.9 ⇥ 10�8 3.7
Scalar 2.1 ⇥ 10�8 6.1 ⇥ 10�8 2.9

TABLE III. Upper limits at the 95% credible level on ⌦ref

for scalar, vector, and tensor polarizations, along with the
improvement of the O3 result over the previous result from
O2. We use the log-uniform prior for ⌦ref and a Gaussian
prior on the spectral index for each polarization, as described
in the main text.

approximate the frequency dependence of the measure-
ments. The vector ⇥MAG contains the parameters of the
model for the coupling functions TI,J(f), which we take
to be a simple power law

|TI(f)| = I

✓
f

10 Hz

◆��I

. (12)

The parameters for the power law GWB are the strength
⌦ref and spectral index ↵. We use nested sampling to
estimate the model evidences for three separate models:
N, MAG, and PL+MAG, using the notation defined in
Section II C.

Our prior distribution for the magnitude I is log uni-
form from 10�25 to 10�22 pT�1 for all of the detectors.
Our prior on the spectral index �I is uniform from �

min

I to
�

max

I , the minimum and maximum values of the spectral
index for the magnetic coupling measured at detector I

during the O3 run. For Hanford, Livingston and Virgo,
the � priors chosen for the study are (0, 12), (1, 10)

and (0, 7), respectively. The chosen prior range is large
enough to encompass all measured coupling function
measurements in O3, including the uncertainties men-
tioned in Section III. We find log

10
B

MAG

N
= �0.03, which

indicates that there is no preference for a model with cor-
related magnetic noise compared to a model with only
uncorrelated Gaussian noise. We also consider a model
with a power-law GWB present, using the log-uniform
prior on ⌦ref and Gaussian prior on ↵ as in Section IV A.
We find that the Bayes factor between a model with cor-
related GWB and magnetic noise, to a model with only
uncorrelated Gaussian noise, is log

10
B

MAG+PL

N
= �0.3,

confirming that there is no evidence of a GWB in the
data.

V. IMPLICATIONS FOR COMPACT BINARIES

With upper limits on the GWB in hand, we now ex-
plore the implications of these results for the GWB due
to CBCs. We first compare our upper limits to updated
predictions for the energy-density due to CBC sources.
We then combine our limits with the direct detections of
CBCs in the local Universe to constrain the merger rate
of compact binaries at large redshifts.

A. Fiducial model

Observations from O3a have significantly increased our
knowledge of the compact binary population [67, 68, 70–
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⌦GW(⌫) = ⌦ref
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A search for the isotropic stochastic background using data from Advanced LIGO’s

second observing run

The LIGO Scientific Collaboration and The Virgo Collaboration

The stochastic gravitational-wave background is a superposition of sources that are either too
weak or too numerous to detect individually. In this study we present the results from a cross-
correlation analysis on data from Advanced LIGO’s second observing run (O2), which we combine
with the results of the first observing run (O1). We do not find evidence for a stochastic background,
so we place upper limits on the normalized energy density in gravitational waves at the 95% credible
level of ⌦GW < 6.0 ⇥ 10�8 for a frequency-independent (flat) background and ⌦GW < 4.8 ⇥ 10�8

at 25 Hz for a background of compact binary coalescences. The upper limit improves over the O1
result by a factor of 2.8. Additionally, we place upper limits on the energy density in an isotropic
background of scalar- and vector-polarized gravitational waves, and we discuss the implication of
these results for models of compact binaries and cosmic string backgrounds. Finally, we present a
conservative estimate of the correlated broadband noise due to the magnetic Schumann resonances
in O2, based on magnetometer measurements at both the LIGO Hanford and LIGO Livingston
observatories. We find that correlated noise is well below the O2 sensitivity.

Introduction— A superposition of gravitational waves
from many astrophysical and cosmological sources cre-
ates a stochastic gravitational-wave background. Sources
which may contribute to the stochastic background in-
clude compact binary coalescences [1–8], core collapse
supernovae [9–14], neutron stars [15–24], stellar core col-
lapse [25, 26], cosmic strings [27–31], primordial black
holes [32, 33], superradiance of axion clouds around black
holes [34–36], and gravitational waves produced during
inflation [37–45]. A particularly promising source is the
stochastic background from compact binary coalescences,
especially in light of the detections of one binary neutron
star and ten binary black hole mergers [46–53] by the
Advanced LIGO Detector, installed in the Laser Interfer-
ometer Gravitational-wave Observatory (LIGO) [54], and
by Advanced Virgo [55] so far. Measurements of the rate
of binary black hole and binary neutron star mergers im-
ply that the stochastic background may be large enough
to detect with the Advanced LIGO-Virgo detector net-
work [56, 57]. The stochastic background is expected to
be dominated by compact binaries at redshifts inaccessi-
ble to direct searches for gravitational-wave events [58].
Additionally, a detection of the stochastic background
would enable a model-independent test of general relativ-
ity by discerning the polarization of gravitational waves
[59, 60]. Because general relativity predicts only two ten-
sor polarizations for gravitational waves, any detection of
alternative polarizations would imply a modification to
our current understanding of gravity [61–63]. For recent
reviews on relevant data analysis methods, see [64, 65].

In this manuscript, we present a search for an isotropic
stochastic background using data from Advanced LIGO’s
second observing run (O2). As in previous LIGO and
Virgo analyses, this search is based on cross-correlating
the strain data between pairs of gravitational-wave de-
tectors [66, 67]. We first review the stochastic search
methodology, then describe the data and data quality
cuts. As we do not find evidence for the stochastic back-

ground, we place upper limits on the possible amplitude
of an isotropic stochastic background, as well as limits
on the presence of alternative gravitational-wave polar-
izations. We then give updated forecasts of the sensi-
tivities of future stochastic searches and discuss the im-
plications of our current results for the detection of the
stochastic background from compact binaries and cosmic
strings. Finally, we present estimates of the correlated
noise in the LIGO detectors due to magnetic Schumann
resonances [68], and discuss mitigation strategies that are
being pursued for future observing runs.
Method— The isotropic stochastic background can be

described in terms of the energy density per logarithmic
frequency interval

⌦GW(f) =
f

⇢c

d⇢GW

df
, (1)

where d⇢GW is the energy density in gravitational waves
in the frequency interval from f to f + df , and ⇢c =
3H

2
0 c

2
/(8⇡G) is the critical energy density required for a

spatially flat universe. Throughout this work we will use
the value of the Hubble constant measured by the Planck
satellite, H0 = 67.9 kms�1Mpc�1 [69].

We use the optimal search for a stationary, Gaussian,
unpolarized, and isotropic stochastic background, which
is the cross-correlation search [64, 65, 70, 71] (however,
see [72]). For two detectors, we define a cross-correlation
statistic Ĉ(f) in every frequency bin

Ĉ(f) =
2

T

Re[s̃?
1(f)s̃2(f)]

�T (f)S0(f)
, (2)

where s̃i(f) is the Fourier transform of the strain time
series in detector i = {1, 2}, T is the segment duration
used to compute the Fourier transform, and S0(f) is the
spectral shape for an ⌦GW = const background given by

S0(f) =
3H

2
0

10⇡2f3
. (3)
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GWB from compact binary coalescence (CBC)

Upper Limits on the Isotropic Gravitational-Wave Background from Advanced

LIGO’s and Advanced Virgo’s Third Observing Run

The LIGO Scientific Collaboration, The Virgo Collaboration, and The KAGRA Collaboration⇤

(Dated: January 29, 2021)

We report results of a search for an isotropic gravitational-wave background (GWB) using data
from Advanced LIGO’s and Advanced Virgo’s third observing run (O3) combined with upper limits
from the earlier O1 and O2 runs. Unlike in previous observing runs in the advanced detector
era, we include Virgo in the search for the GWB. The results of the search are consistent with
uncorrelated noise, and therefore we place upper limits on the strength of the GWB. We find that
the dimensionless energy density ⌦GW  5.8 ⇥ 10�9 at the 95% credible level for a flat (frequency-
independent) GWB, using a prior which is uniform in the log of the strength of the GWB, with 99%
of the sensitivity coming from the band 20-76.6 Hz; ⌦GW(f)  3.4 ⇥ 10�9 at 25 Hz for a power-law
GWB with a spectral index of 2/3 (consistent with expectations for compact binary coalescences),
in the band 20-90.6 Hz; and ⌦GW(f)  3.9 ⇥ 10�10 at 25 Hz for a spectral index of 3, in the band
20-291.6 Hz. These upper limits improve over our previous results by a factor of 6.0 for a flat GWB,
8.8 for a spectral index of 2/3, and 13.1 for a spectral index of 3. We also search for a GWB arising
from scalar and vector modes, which are predicted by alternative theories of gravity; we do not
find evidence of these, and place upper limits on the strength of GWBs with these polarizations.
We demonstrate that there is no evidence of correlated noise of magnetic origin by performing a
Bayesian analysis that allows for the presence of both a GWB and an e↵ective magnetic background
arising from geophysical Schumann resonances. We compare our upper limits to a fiducial model
for the GWB from the merger of compact binaries, updating the model to use the most recent data-
driven population inference from the systems detected during O3a. Finally, we combine our results
with observations of individual mergers and show that, at design sensitivity, this joint approach may
yield stronger constraints on the merger rate of binary black holes at z & 2 than can be achieved
with individually resolved mergers alone.

I. INTRODUCTION

The gravitational-wave background (hereafter referred
to as the GWB or the background) is a superposition of
gravitational-wave (GW) sources that is best character-
ized statistically [1]. There are many possible astrophys-
ical and cosmological contributions to the background,
including distant compact binary coalescences (CBCs)
that cannot be resolved individually [2–6], core collapse
supernovae [7–11], rotating neutron stars [12–19], stellar
core collapses [20, 21], cosmic strings [22–26], primordial
black holes [27–29], superradiance of axion clouds around
black holes [30–33], phase transitions in the early uni-
verse [34–37], and GWs produced during inflation [38–40]
or in a preheating phase at the end of inflation [41, 42].
While some sources of the GWB, such as slow roll infla-
tion, have a fundamentally stochastic character, others
like the background from CBCs are a superposition of
deterministic sources.

The LIGO Scientific Collaboration and Virgo Collab-
oration have previously placed upper limits on isotropic
[43] and anisotropic [44] GWBs using data from the first
two observing runs, in the frequency range 20-1726 Hz.
The searches were performed by calculating the cross cor-
relation between pairs of detectors. An extension of this
method has been applied to searching for a background
of non-tensor modes [43, 45, 46]; see [47, 48] for recent

⇤ Full author list given at the end of the article.

reviews. Cross-correlation methods have also been ap-
plied to publicly released LIGO data [49] by other groups,
who have obtained similar upper limits [50–52]. A new
method that does not rely on the cross-correlation tech-
nique and targets the background from CBCs was pro-
posed in [53].

In this work we apply the cross-correlation based
method used in previous analyses to Advanced LIGO’s
[54] and Advanced Virgo’s [55] first three observing runs
(O1, O2, and O3). We do not find evidence for the GWB,
and therefore place an upper limit on the strength. Un-
like in previous observing runs, in this work we present
the headline results using a log uniform prior [56]. We
find two advantages to using a log uniform prior. First, a
log uniform prior gives equal weight to di↵erent orders of
magnitude of the strength of the GWBs, which is appro-
priate given our current state of knowledge. Second, a log
uniform prior is agnostic as to which power we raise the
strain data. It is not clear whether one should put a uni-
form prior on the strain amplitude, or the strength of the
GWB, which scales like the square of the strain. On the
other hand, the log uniform prior does not depend on the
exponent of the strain data. For completeness, we also
present results with a uniform prior on the strength of the
GWB in Section IV. Results with any other prior can be
obtained by reweighing the posterior samples available at
[57].

There are several new features in our analysis of the
O3 data. First, we incorporate Virgo, by cross correlating
the three independent baselines in the LIGO-Virgo net-
work and combining them in an optimal way [58]. Sec-
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So, detection is indeed hard!
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ΩGW ≪ ΩCMB ≈10−5 (54)
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Most important quantities describing each BBH are the masses and spins of each component BH

infrerred from 
observed BBHs

Truncated power-law BH mass distribution:

Beta distribution for the BH spins:

The total energy density varies over nearly two orders of magnitude

a new probe of population of compact objects
Jenkins, O’Shaughnessy, Sakellariadou, Wysocki,  PRL 122, 111101 (2019)

Wysocki, Lange, O’Shaughnessy (2018)  
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1dim topological defects formed in the early universe as a result of a PT followed 
by SSB, characterised by a vacuum manifold with non-contractible closed curves

Generically formed in the context of GUTs
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hĈ(⌫)i = ⌦GW(⌫) (3)
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For the kink case, we approximate the fan as a great circle
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In both cases the observable signal is dominated by high
frequencies ⌫s � 1/l. This gives ✓

3
b ⌧ 1, so we neglect

subleading terms in the above expressions.
In addition to cusps and kinks, collisions between prop-

agating kinks might also be an important source of GW
bursts [27, 28]. The radiation from these collisions is
isotropic rather than beamed, and has a waveform
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Using the above we can deduce the observable fraction of
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B. SGWB decomposition

Summing the contributions from cusps, kinks, and kink-
kink collisions and using Eq. (28) to convert between ⌫s

and ⌫o, we obtain
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With reference to Sec. II D, we write this as
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where x ⌘ 1 + êo · vo as before. We therefore see that the
averaged isotropic background value (monopole) is
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The dipole factor is straightforward to evaluate from

Eqs. (33) and (75), noting that @
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where x ⌘ 1 + êo · vo as before. We therefore see that the
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with the source anisotropies given by
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The dipole factor is straightforward to evaluate from

Eqs. (33) and (75), noting that @
@x⇥

⇣
� �

2ax
⌫ot

⌘
=

11
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In both cases the observable signal is dominated by high
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subleading terms in the above expressions.
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Kinks are created in pairs propagating in opposite direc-
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with A a numerical constant, defined as
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Using the above we can deduce the observable fraction of
bursts of each type, fo,i. Let us write
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where fb,i is the fraction of bursts that are beamed along
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B. SGWB decomposition

Summing the contributions from cusps, kinks, and kink-
kink collisions and using Eq. (28) to convert between ⌫s

and ⌫o, we obtain

⌦gw =
2(Gµ)2

3p2H2
o⌫o

Z t⇤

0

dt

t4
a
5

Z �⇤

0

d�

�
F̄(1 + �F + 5êo · vo)
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spectively, a cross-correlation estimator for the IJ de-
tecor pair and its variance at frequency fa as detailed
in [50]. Following the same approach as in the O1
stochastic analysis we have used the frequency bins rang-
ing from 20 to 86 Hz. The gravitational-wave energy den-

sity, ⌦(M)
GW(fa;Gµ,Nk), is predicted by the cosmic string

model M = {A,B,C} and computed with Eq. 10 at fre-
quency fa.

For our Bayesian analysis, we specify priors for the
parameters in the cosmic string model, i.e., p(Gµ|IGµ)
and p(Nk|INk). The variables IGµ and INk denote the
information on the distributions of Gµ and Nk, which
are determined by theory predictions. For p(Gµ|IGµ),
we choose a log-uniform prior for 10�18  Gµ  10�6.
Here the upper bound is set by the cosmic microwave
background measurements [51–54]. The lower bound is
arbitrary, chosen for consistency with the study in [55];
we note, however, that our results remain almost un-
changed if we choose a smaller value for the lower bound
on Gµ. For p(Nk|INk), we aim at constraining Gµ for
each choice of Nk. Therefore the prior p(Nk|INk) is taken
to be a �-function for each value of Nk. The number of
kinks per loop oscillation Nk being fixed, the posterior
for the parameter Gµ is calculated according to Bayes’
theorem:

p(Gµ|Nk) / L(ĈIJ
a |Gµ,Nk)p(Gµ|IGµ)p(Nk|INk).(14)

We calculate 95% credible intervals for Gµ.

V. CONSTRAINTS

We show in Fig. 3 the region of the Gµ and Nk pa-
rameter space excluded at the 95% confidence level by
the burst and stochastic searches; the number of cusps
Nc being fixed to 1. For the stochastic search (Sec. IV)
we present constraints from the combined O1+O2+O3
data; for the burst search (Sec. III) we derive constraints
from the non-detection result using O3 data. We con-
sider three models for the Nambu-Goto cosmic string
loop distributions, dubbed A, B and C. For the latter
we choose two sets of benchmark numbers: for model C-
1 we set (�rad,�mat) = (0.45, 0.295) and for model C-2
(�rad,�mat) = (0.2, 0.45) (see the Supplemental Mate-
rial).

Using model A, the derived gravitational-wave power
spectrum is much weaker than in the other models, lead-
ing to weaker constraints. Model C-2 mimics the loop
production function of model A in the matter era and of
model B in the radiation era. In the frequency band of
LIGO–Virgo, the stochastic background is dominated by
the contribution from loops in the radiation era, hence
models B and C-2 give similar results. Conversely, the
gravitational-wave power spectrum obtained from model
C-1, which mimics the loop production function of model
A in the radiation era and of model B in the matter era,
presents more subtle features. Larger values of Gµ do

not necessarily produce larger signal amplitudes, creat-
ing structures in the constraint plot. For an analytical
understanding of these findings, we refer the reader to
[57]. For a better understanding of the loop visibility
domain in terms of redshift, we refer to the Fig. 2 of
[58].
The stochastic analysis leads to the following con-

straints on Gµ. For model A, we rule out the range
Gµ & (9.6 ⇥ 10�9 � 10�6). For model B, we rule out:
Gµ & (4.0 � 6.3) ⇥ 10�15. For model C-1, we rule out
Gµ & (2.1 � 4.5) ⇥ 10�15, aside from a small region
where Nk & 180. Finally, for model C-2, we rule out:
Gµ & (4.2� 7.0)⇥ 10�15.
The burst search upper limits are not as stringent as

the ones derived from the stochastic search. In particular,
the constraints on the string tension for model A are
too weak to be represented in the figure. The only case
where the burst analysis leads to tighter constraints, is
for model C-1 and for Nk > 70.
In the present analysis, the average number of cusps

per oscillation on a loop has been set to 1. It has been
shown that the number of cusps per period of string
oscillation scales with the number of harmonics on the
loop [59]. Note that with many cusps on the string, the
decay constant �d is enhanced and the lifetime of the loop
is hence greatly reduced. Consequently, a high number
of cusps on the loops gives qualitatively the same result
as increasing the number of kinks: for model A, the con-
straints are weakened, whereas for models B and C the
bounds are insensitive to Nc; this has been confirmed by
our numerical study.
One can also compare these results with limits ob-

tained from pulsar timing array measurements, and in-
direct limits from Big Bang nucleosynthesis and cosmic
microwave background data [56]. Repeating the analysis
done in [28] with Nk up to 200, we find that for model
A, the strongest limit comes from pulsar timing measure-
ments, excluding string tensions Gµ & 10�10. For model
B and C-1 the strongest limits are derived from the
LIGO–Virgo stochastic search. Finally, for model C-2,
the cosmic microwave background constraint is almost as
strong as the one obtained from the O1+O2+O3 stochas-
tic search. The next observing run, O4, will give us a new
opportunity to detect signals from cosmic strings.

VI. CONCLUSIONS

Using data from the third observing run of Advanced
LIGO and Virgo, we have performed a burst and a
stochastic gravitational wave background search to con-
strain the tension of Nambu-Goto strings, as a function
of the number of kinks per oscillation, for four loop dis-
tributions. We have tested models A and B already con-
sidered in the O1 and O2 analyses [49]. The current
constraints on Gµ are stronger by two and one orders of
magnitude for models A and B, respectively, when fix-
ing Nk = 1. In addition, we have used two variants of a
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GW(fa;Gµ,Nk), is predicted by the cosmic string

model M = {A,B,C} and computed with Eq. 10 at fre-
quency fa.

For our Bayesian analysis, we specify priors for the
parameters in the cosmic string model, i.e., p(Gµ|IGµ)
and p(Nk|INk). The variables IGµ and INk denote the
information on the distributions of Gµ and Nk, which
are determined by theory predictions. For p(Gµ|IGµ),
we choose a log-uniform prior for 10�18  Gµ  10�6.
Here the upper bound is set by the cosmic microwave
background measurements [51–54]. The lower bound is
arbitrary, chosen for consistency with the study in [55];
we note, however, that our results remain almost un-
changed if we choose a smaller value for the lower bound
on Gµ. For p(Nk|INk), we aim at constraining Gµ for
each choice of Nk. Therefore the prior p(Nk|INk) is taken
to be a �-function for each value of Nk. The number of
kinks per loop oscillation Nk being fixed, the posterior
for the parameter Gµ is calculated according to Bayes’
theorem:

p(Gµ|Nk) / L(ĈIJ
a |Gµ,Nk)p(Gµ|IGµ)p(Nk|INk).(14)

We calculate 95% credible intervals for Gµ.

V. CONSTRAINTS

We show in Fig. 3 the region of the Gµ and Nk pa-
rameter space excluded at the 95% confidence level by
the burst and stochastic searches; the number of cusps
Nc being fixed to 1. For the stochastic search (Sec. IV)
we present constraints from the combined O1+O2+O3
data; for the burst search (Sec. III) we derive constraints
from the non-detection result using O3 data. We con-
sider three models for the Nambu-Goto cosmic string
loop distributions, dubbed A, B and C. For the latter
we choose two sets of benchmark numbers: for model C-
1 we set (�rad,�mat) = (0.45, 0.295) and for model C-2
(�rad,�mat) = (0.2, 0.45) (see the Supplemental Mate-
rial).

Using model A, the derived gravitational-wave power
spectrum is much weaker than in the other models, lead-
ing to weaker constraints. Model C-2 mimics the loop
production function of model A in the matter era and of
model B in the radiation era. In the frequency band of
LIGO–Virgo, the stochastic background is dominated by
the contribution from loops in the radiation era, hence
models B and C-2 give similar results. Conversely, the
gravitational-wave power spectrum obtained from model
C-1, which mimics the loop production function of model
A in the radiation era and of model B in the matter era,
presents more subtle features. Larger values of Gµ do

not necessarily produce larger signal amplitudes, creat-
ing structures in the constraint plot. For an analytical
understanding of these findings, we refer the reader to
[57]. For a better understanding of the loop visibility
domain in terms of redshift, we refer to the Fig. 2 of
[58].
The stochastic analysis leads to the following con-

straints on Gµ. For model A, we rule out the range
Gµ & (9.6 ⇥ 10�9 � 10�6). For model B, we rule out:
Gµ & (4.0 � 6.3) ⇥ 10�15. For model C-1, we rule out
Gµ & (2.1 � 4.5) ⇥ 10�15, aside from a small region
where Nk & 180. Finally, for model C-2, we rule out:
Gµ & (4.2� 7.0)⇥ 10�15.
The burst search upper limits are not as stringent as

the ones derived from the stochastic search. In particular,
the constraints on the string tension for model A are
too weak to be represented in the figure. The only case
where the burst analysis leads to tighter constraints, is
for model C-1 and for Nk > 70.
In the present analysis, the average number of cusps

per oscillation on a loop has been set to 1. It has been
shown that the number of cusps per period of string
oscillation scales with the number of harmonics on the
loop [59]. Note that with many cusps on the string, the
decay constant �d is enhanced and the lifetime of the loop
is hence greatly reduced. Consequently, a high number
of cusps on the loops gives qualitatively the same result
as increasing the number of kinks: for model A, the con-
straints are weakened, whereas for models B and C the
bounds are insensitive to Nc; this has been confirmed by
our numerical study.
One can also compare these results with limits ob-

tained from pulsar timing array measurements, and in-
direct limits from Big Bang nucleosynthesis and cosmic
microwave background data [56]. Repeating the analysis
done in [28] with Nk up to 200, we find that for model
A, the strongest limit comes from pulsar timing measure-
ments, excluding string tensions Gµ & 10�10. For model
B and C-1 the strongest limits are derived from the
LIGO–Virgo stochastic search. Finally, for model C-2,
the cosmic microwave background constraint is almost as
strong as the one obtained from the O1+O2+O3 stochas-
tic search. The next observing run, O4, will give us a new
opportunity to detect signals from cosmic strings.

VI. CONCLUSIONS

Using data from the third observing run of Advanced
LIGO and Virgo, we have performed a burst and a
stochastic gravitational wave background search to con-
strain the tension of Nambu-Goto strings, as a function
of the number of kinks per oscillation, for four loop dis-
tributions. We have tested models A and B already con-
sidered in the O1 and O2 analyses [49]. The current
constraints on Gµ are stronger by two and one orders of
magnitude for models A and B, respectively, when fix-
ing Nk = 1. In addition, we have used two variants of a
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is hence greatly reduced. Consequently, a high number
of cusps on the loops gives qualitatively the same result
as increasing the number of kinks: for model A, the con-
straints are weakened, whereas for models B and C the
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our numerical study.
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tained from pulsar timing array measurements, and in-
direct limits from Big Bang nucleosynthesis and cosmic
microwave background data [56]. Repeating the analysis
done in [28] with Nk up to 200, we find that for model
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ments, excluding string tensions Gµ & 10�10. For model
B and C-1 the strongest limits are derived from the
LIGO–Virgo stochastic search. Finally, for model C-2,
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strong as the one obtained from the O1+O2+O3 stochas-
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sity, ⌦(M)
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For our Bayesian analysis, we specify priors for the
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and p(Nk|INk). The variables IGµ and INk denote the
information on the distributions of Gµ and Nk, which
are determined by theory predictions. For p(Gµ|IGµ),
we choose a log-uniform prior for 10�18  Gµ  10�6.
Here the upper bound is set by the cosmic microwave
background measurements [51–54]. The lower bound is
arbitrary, chosen for consistency with the study in [55];
we note, however, that our results remain almost un-
changed if we choose a smaller value for the lower bound
on Gµ. For p(Nk|INk), we aim at constraining Gµ for
each choice of Nk. Therefore the prior p(Nk|INk) is taken
to be a �-function for each value of Nk. The number of
kinks per loop oscillation Nk being fixed, the posterior
for the parameter Gµ is calculated according to Bayes’
theorem:
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We show in Fig. 3 the region of the Gµ and Nk pa-
rameter space excluded at the 95% confidence level by
the burst and stochastic searches; the number of cusps
Nc being fixed to 1. For the stochastic search (Sec. IV)
we present constraints from the combined O1+O2+O3
data; for the burst search (Sec. III) we derive constraints
from the non-detection result using O3 data. We con-
sider three models for the Nambu-Goto cosmic string
loop distributions, dubbed A, B and C. For the latter
we choose two sets of benchmark numbers: for model C-
1 we set (�rad,�mat) = (0.45, 0.295) and for model C-2
(�rad,�mat) = (0.2, 0.45) (see the Supplemental Mate-
rial).

Using model A, the derived gravitational-wave power
spectrum is much weaker than in the other models, lead-
ing to weaker constraints. Model C-2 mimics the loop
production function of model A in the matter era and of
model B in the radiation era. In the frequency band of
LIGO–Virgo, the stochastic background is dominated by
the contribution from loops in the radiation era, hence
models B and C-2 give similar results. Conversely, the
gravitational-wave power spectrum obtained from model
C-1, which mimics the loop production function of model
A in the radiation era and of model B in the matter era,
presents more subtle features. Larger values of Gµ do

not necessarily produce larger signal amplitudes, creat-
ing structures in the constraint plot. For an analytical
understanding of these findings, we refer the reader to
[57]. For a better understanding of the loop visibility
domain in terms of redshift, we refer to the Fig. 2 of
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The stochastic analysis leads to the following con-
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Gµ & (9.6 ⇥ 10�9 � 10�6). For model B, we rule out:
Gµ & (4.0 � 6.3) ⇥ 10�15. For model C-1, we rule out
Gµ & (2.1 � 4.5) ⇥ 10�15, aside from a small region
where Nk & 180. Finally, for model C-2, we rule out:
Gµ & (4.2� 7.0)⇥ 10�15.
The burst search upper limits are not as stringent as

the ones derived from the stochastic search. In particular,
the constraints on the string tension for model A are
too weak to be represented in the figure. The only case
where the burst analysis leads to tighter constraints, is
for model C-1 and for Nk > 70.
In the present analysis, the average number of cusps

per oscillation on a loop has been set to 1. It has been
shown that the number of cusps per period of string
oscillation scales with the number of harmonics on the
loop [59]. Note that with many cusps on the string, the
decay constant �d is enhanced and the lifetime of the loop
is hence greatly reduced. Consequently, a high number
of cusps on the loops gives qualitatively the same result
as increasing the number of kinks: for model A, the con-
straints are weakened, whereas for models B and C the
bounds are insensitive to Nc; this has been confirmed by
our numerical study.
One can also compare these results with limits ob-

tained from pulsar timing array measurements, and in-
direct limits from Big Bang nucleosynthesis and cosmic
microwave background data [56]. Repeating the analysis
done in [28] with Nk up to 200, we find that for model
A, the strongest limit comes from pulsar timing measure-
ments, excluding string tensions Gµ & 10�10. For model
B and C-1 the strongest limits are derived from the
LIGO–Virgo stochastic search. Finally, for model C-2,
the cosmic microwave background constraint is almost as
strong as the one obtained from the O1+O2+O3 stochas-
tic search. The next observing run, O4, will give us a new
opportunity to detect signals from cosmic strings.

VI. CONCLUSIONS

Using data from the third observing run of Advanced
LIGO and Virgo, we have performed a burst and a
stochastic gravitational wave background search to con-
strain the tension of Nambu-Goto strings, as a function
of the number of kinks per oscillation, for four loop dis-
tributions. We have tested models A and B already con-
sidered in the O1 and O2 analyses [49]. The current
constraints on Gµ are stronger by two and one orders of
magnitude for models A and B, respectively, when fix-
ing Nk = 1. In addition, we have used two variants of a
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spectively, a cross-correlation estimator for the IJ de-
tecor pair and its variance at frequency fa as detailed
in [50]. Following the same approach as in the O1
stochastic analysis we have used the frequency bins rang-
ing from 20 to 86 Hz. The gravitational-wave energy den-

sity, ⌦(M)
GW(fa;Gµ,Nk), is predicted by the cosmic string

model M = {A,B,C} and computed with Eq. 10 at fre-
quency fa.

For our Bayesian analysis, we specify priors for the
parameters in the cosmic string model, i.e., p(Gµ|IGµ)
and p(Nk|INk). The variables IGµ and INk denote the
information on the distributions of Gµ and Nk, which
are determined by theory predictions. For p(Gµ|IGµ),
we choose a log-uniform prior for 10�18  Gµ  10�6.
Here the upper bound is set by the cosmic microwave
background measurements [51–54]. The lower bound is
arbitrary, chosen for consistency with the study in [55];
we note, however, that our results remain almost un-
changed if we choose a smaller value for the lower bound
on Gµ. For p(Nk|INk), we aim at constraining Gµ for
each choice of Nk. Therefore the prior p(Nk|INk) is taken
to be a �-function for each value of Nk. The number of
kinks per loop oscillation Nk being fixed, the posterior
for the parameter Gµ is calculated according to Bayes’
theorem:

p(Gµ|Nk) / L(ĈIJ
a |Gµ,Nk)p(Gµ|IGµ)p(Nk|INk).(14)

We calculate 95% credible intervals for Gµ.

V. CONSTRAINTS

We show in Fig. 3 the region of the Gµ and Nk pa-
rameter space excluded at the 95% confidence level by
the burst and stochastic searches; the number of cusps
Nc being fixed to 1. For the stochastic search (Sec. IV)
we present constraints from the combined O1+O2+O3
data; for the burst search (Sec. III) we derive constraints
from the non-detection result using O3 data. We con-
sider three models for the Nambu-Goto cosmic string
loop distributions, dubbed A, B and C. For the latter
we choose two sets of benchmark numbers: for model C-
1 we set (�rad,�mat) = (0.45, 0.295) and for model C-2
(�rad,�mat) = (0.2, 0.45) (see the Supplemental Mate-
rial).

Using model A, the derived gravitational-wave power
spectrum is much weaker than in the other models, lead-
ing to weaker constraints. Model C-2 mimics the loop
production function of model A in the matter era and of
model B in the radiation era. In the frequency band of
LIGO–Virgo, the stochastic background is dominated by
the contribution from loops in the radiation era, hence
models B and C-2 give similar results. Conversely, the
gravitational-wave power spectrum obtained from model
C-1, which mimics the loop production function of model
A in the radiation era and of model B in the matter era,
presents more subtle features. Larger values of Gµ do

not necessarily produce larger signal amplitudes, creat-
ing structures in the constraint plot. For an analytical
understanding of these findings, we refer the reader to
[57]. For a better understanding of the loop visibility
domain in terms of redshift, we refer to the Fig. 2 of
[58].
The stochastic analysis leads to the following con-

straints on Gµ. For model A, we rule out the range
Gµ & (9.6 ⇥ 10�9 � 10�6). For model B, we rule out:
Gµ & (4.0 � 6.3) ⇥ 10�15. For model C-1, we rule out
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where Nk & 180. Finally, for model C-2, we rule out:
Gµ & (4.2� 7.0)⇥ 10�15.
The burst search upper limits are not as stringent as

the ones derived from the stochastic search. In particular,
the constraints on the string tension for model A are
too weak to be represented in the figure. The only case
where the burst analysis leads to tighter constraints, is
for model C-1 and for Nk > 70.
In the present analysis, the average number of cusps

per oscillation on a loop has been set to 1. It has been
shown that the number of cusps per period of string
oscillation scales with the number of harmonics on the
loop [59]. Note that with many cusps on the string, the
decay constant �d is enhanced and the lifetime of the loop
is hence greatly reduced. Consequently, a high number
of cusps on the loops gives qualitatively the same result
as increasing the number of kinks: for model A, the con-
straints are weakened, whereas for models B and C the
bounds are insensitive to Nc; this has been confirmed by
our numerical study.
One can also compare these results with limits ob-

tained from pulsar timing array measurements, and in-
direct limits from Big Bang nucleosynthesis and cosmic
microwave background data [56]. Repeating the analysis
done in [28] with Nk up to 200, we find that for model
A, the strongest limit comes from pulsar timing measure-
ments, excluding string tensions Gµ & 10�10. For model
B and C-1 the strongest limits are derived from the
LIGO–Virgo stochastic search. Finally, for model C-2,
the cosmic microwave background constraint is almost as
strong as the one obtained from the O1+O2+O3 stochas-
tic search. The next observing run, O4, will give us a new
opportunity to detect signals from cosmic strings.
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Using data from the third observing run of Advanced
LIGO and Virgo, we have performed a burst and a
stochastic gravitational wave background search to con-
strain the tension of Nambu-Goto strings, as a function
of the number of kinks per oscillation, for four loop dis-
tributions. We have tested models A and B already con-
sidered in the O1 and O2 analyses [49]. The current
constraints on Gµ are stronger by two and one orders of
magnitude for models A and B, respectively, when fix-
ing Nk = 1. In addition, we have used two variants of a

6

spectively, a cross-correlation estimator for the IJ de-
tecor pair and its variance at frequency fa as detailed
in [50]. Following the same approach as in the O1
stochastic analysis we have used the frequency bins rang-
ing from 20 to 86 Hz. The gravitational-wave energy den-

sity, ⌦(M)
GW(fa;Gµ,Nk), is predicted by the cosmic string

model M = {A,B,C} and computed with Eq. 10 at fre-
quency fa.

For our Bayesian analysis, we specify priors for the
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and p(Nk|INk). The variables IGµ and INk denote the
information on the distributions of Gµ and Nk, which
are determined by theory predictions. For p(Gµ|IGµ),
we choose a log-uniform prior for 10�18  Gµ  10�6.
Here the upper bound is set by the cosmic microwave
background measurements [51–54]. The lower bound is
arbitrary, chosen for consistency with the study in [55];
we note, however, that our results remain almost un-
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on Gµ. For p(Nk|INk), we aim at constraining Gµ for
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is hence greatly reduced. Consequently, a high number
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bounds are insensitive to Nc; this has been confirmed by
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direct limits from Big Bang nucleosynthesis and cosmic
microwave background data [56]. Repeating the analysis
done in [28] with Nk up to 200, we find that for model
A, the strongest limit comes from pulsar timing measure-
ments, excluding string tensions Gµ & 10�10. For model
B and C-1 the strongest limits are derived from the
LIGO–Virgo stochastic search. Finally, for model C-2,
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strong as the one obtained from the O1+O2+O3 stochas-
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opportunity to detect signals from cosmic strings.

VI. CONCLUSIONS

Using data from the third observing run of Advanced
LIGO and Virgo, we have performed a burst and a
stochastic gravitational wave background search to con-
strain the tension of Nambu-Goto strings, as a function
of the number of kinks per oscillation, for four loop dis-
tributions. We have tested models A and B already con-
sidered in the O1 and O2 analyses [49]. The current
constraints on Gµ are stronger by two and one orders of
magnitude for models A and B, respectively, when fix-
ing Nk = 1. In addition, we have used two variants of a
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spectively, a cross-correlation estimator for the IJ de-
tecor pair and its variance at frequency fa as detailed
in [50]. Following the same approach as in the O1
stochastic analysis we have used the frequency bins rang-
ing from 20 to 86 Hz. The gravitational-wave energy den-

sity, ⌦(M)
GW(fa;Gµ,Nk), is predicted by the cosmic string

model M = {A,B,C} and computed with Eq. 10 at fre-
quency fa.

For our Bayesian analysis, we specify priors for the
parameters in the cosmic string model, i.e., p(Gµ|IGµ)
and p(Nk|INk). The variables IGµ and INk denote the
information on the distributions of Gµ and Nk, which
are determined by theory predictions. For p(Gµ|IGµ),
we choose a log-uniform prior for 10�18  Gµ  10�6.
Here the upper bound is set by the cosmic microwave
background measurements [51–54]. The lower bound is
arbitrary, chosen for consistency with the study in [55];
we note, however, that our results remain almost un-
changed if we choose a smaller value for the lower bound
on Gµ. For p(Nk|INk), we aim at constraining Gµ for
each choice of Nk. Therefore the prior p(Nk|INk) is taken
to be a �-function for each value of Nk. The number of
kinks per loop oscillation Nk being fixed, the posterior
for the parameter Gµ is calculated according to Bayes’
theorem:

p(Gµ|Nk) / L(ĈIJ
a |Gµ,Nk)p(Gµ|IGµ)p(Nk|INk).(14)

We calculate 95% credible intervals for Gµ.

V. CONSTRAINTS

We show in Fig. 3 the region of the Gµ and Nk pa-
rameter space excluded at the 95% confidence level by
the burst and stochastic searches; the number of cusps
Nc being fixed to 1. For the stochastic search (Sec. IV)
we present constraints from the combined O1+O2+O3
data; for the burst search (Sec. III) we derive constraints
from the non-detection result using O3 data. We con-
sider three models for the Nambu-Goto cosmic string
loop distributions, dubbed A, B and C. For the latter
we choose two sets of benchmark numbers: for model C-
1 we set (�rad,�mat) = (0.45, 0.295) and for model C-2
(�rad,�mat) = (0.2, 0.45) (see the Supplemental Mate-
rial).

Using model A, the derived gravitational-wave power
spectrum is much weaker than in the other models, lead-
ing to weaker constraints. Model C-2 mimics the loop
production function of model A in the matter era and of
model B in the radiation era. In the frequency band of
LIGO–Virgo, the stochastic background is dominated by
the contribution from loops in the radiation era, hence
models B and C-2 give similar results. Conversely, the
gravitational-wave power spectrum obtained from model
C-1, which mimics the loop production function of model
A in the radiation era and of model B in the matter era,
presents more subtle features. Larger values of Gµ do

not necessarily produce larger signal amplitudes, creat-
ing structures in the constraint plot. For an analytical
understanding of these findings, we refer the reader to
[57]. For a better understanding of the loop visibility
domain in terms of redshift, we refer to the Fig. 2 of
[58].
The stochastic analysis leads to the following con-

straints on Gµ. For model A, we rule out the range
Gµ & (9.6 ⇥ 10�9 � 10�6). For model B, we rule out:
Gµ & (4.0 � 6.3) ⇥ 10�15. For model C-1, we rule out
Gµ & (2.1 � 4.5) ⇥ 10�15, aside from a small region
where Nk & 180. Finally, for model C-2, we rule out:
Gµ & (4.2� 7.0)⇥ 10�15.
The burst search upper limits are not as stringent as

the ones derived from the stochastic search. In particular,
the constraints on the string tension for model A are
too weak to be represented in the figure. The only case
where the burst analysis leads to tighter constraints, is
for model C-1 and for Nk > 70.
In the present analysis, the average number of cusps

per oscillation on a loop has been set to 1. It has been
shown that the number of cusps per period of string
oscillation scales with the number of harmonics on the
loop [59]. Note that with many cusps on the string, the
decay constant �d is enhanced and the lifetime of the loop
is hence greatly reduced. Consequently, a high number
of cusps on the loops gives qualitatively the same result
as increasing the number of kinks: for model A, the con-
straints are weakened, whereas for models B and C the
bounds are insensitive to Nc; this has been confirmed by
our numerical study.
One can also compare these results with limits ob-

tained from pulsar timing array measurements, and in-
direct limits from Big Bang nucleosynthesis and cosmic
microwave background data [56]. Repeating the analysis
done in [28] with Nk up to 200, we find that for model
A, the strongest limit comes from pulsar timing measure-
ments, excluding string tensions Gµ & 10�10. For model
B and C-1 the strongest limits are derived from the
LIGO–Virgo stochastic search. Finally, for model C-2,
the cosmic microwave background constraint is almost as
strong as the one obtained from the O1+O2+O3 stochas-
tic search. The next observing run, O4, will give us a new
opportunity to detect signals from cosmic strings.
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of the number of kinks per oscillation, for four loop dis-
tributions. We have tested models A and B already con-
sidered in the O1 and O2 analyses [49]. The current
constraints on Gµ are stronger by two and one orders of
magnitude for models A and B, respectively, when fix-
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SGWB from cosmic strings: info Beyond the Standard Model 

LISA will be able to probe cosmic strings with tensions

Auclair et al (Sakellariadou), JCAP (2020) 

But …

- instrumental noise

- astrophysical background from CBCs
- galactic foreground from WD binaries

Boileau, Jenkins, Sakellariadou, Meyer, Christensen (2021)

A CS tension in the                           to
range  or bigger could be

measured by LISA, with the galactic
foreground affecting this limit more 
than the astrophysical background 
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SGWB from first order phase transition(FOPT): info Beyond the Standard Model 

Sources of GWs:
- Sound waves (coupling between scalar field and thermal bath)
- Bubble collisions
- Magnetohydrodynamic turbulence

SGWB: broken power law with peak frequency mainly determined by temperature of  FOPT

If                                                      (not accessible by LHC) : SGWB is within aLIGO/aVIRGO
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Motivation for the analysis

Models Beyond the Standard Model 
predict First Order Phase Transitions 
(FOPTs) in the early universe.
The energies involved are much 
larger than the energy scale of the 
Big Bang Nucleosynthesis and the 
CMB (unreachable at LHC) → 
stochastic gravitational waves can be 
an alternative probe. For example, 
their detection could explain: 

● Peccei-Quinn symmetry breaking
● High-scale Supersymmetry 

breaking
● Neutrino masses
● Origin of dark matter
● Inflationary  models  ending  in  a  

FOPT (sourced by bubble 
collisions)

Introduction to cosmological FOPTs

The Universe goes from a false vacuum (FV) to a true vacuum (TV). This happens via quantum 
or thermal nucleation of bubbles of the broken phase, separated from the surrounding unbroken 
phase by a wall.

This process generates shear stresses which source GWs. We can distinguish three sources: 
sound waves (SW), bubble collisions (BC) and magnetohydrodynamic turbulences  (the latter 
are negligible). Two separate approaches are considered in the analysis:
● A model-independent broken power law (BPL) describing main features of the anticipated 

power spectrum.
● A phenomenological model of bubble collision and sound waves as a function of physical 

parameters like temperature, wall velocity, or strength and duration of the FOPT.

Bubble collisions (BC)

Bayesian search and model selection [2]

Log-likelihood:
Cross-correlation estimator of the SGWB calculated 
using data from detectors I and J, and its variance [3]

Model with which we try to fit the data, which depends on 
the frequency and the model parameters θgw . 

𝝮gw(f,θgw)=𝝮cbc(f)+𝝮FOPT (f), where 𝝮cbc(f)=𝝮ref(f/25 Hz)⅔  and 𝝮FOPT (f) is the 
contribution from FOPTs, modelled by a BPL or by a phenomenological model [1]

𝝮gw(f,θgw)

[1] A. Romero, K. Martinovic, T. A. Callister, H. Guo, M. Martínez, 
M. Sakellariadou, F. Yang, Y. Zhao (arXiv:2102.01714 [hep-ph])
[2] V. Mandic, E. Thrane, S. Giampanis, and T. Regimbau, Phys. 
Rev. Lett.109, 171102 (2012), URL
[3] B. P. Abbott et al. (LIGO Scientific, Virgo), (arXiv:2101.12130 
[gr-qc])
[4] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev.Lett. 120, 
091101 (2018), 1710.05837.

n1=3 by causality and n2=-4 for SW and -1 for BC

This narrow prior stems from estimates 
of the CBC background [4] 

First analysis approach: BPL

Data do not show evidence 
for any signal from FOPTs, 
as the Bayes factor (see 
definition in the blue box to 
the right) between signal 
and noise shows:

We do not have enough sensitivity to 
set upper limits  on f* or n2

Sound waves (SW)

Priors used in the analysis
Strength of the FOPT

Inverse duration of the FOPT

Temperature of the FOPT

Bubble wall velocity

Efficiencies of 
each source of 
GWs

Conclusions

The O1-O3 LIGO/Virgo data show no signal for stochastic GWs. Using a Bayesian approach, we set 95% CL upper 
limits on some of the parameters of different models describing cosmological FOPTs in the early Universe, leading 
to stochastic GW signals. We assumed astrophysical background contributions from CBC sources in addition to 
signals from  FOPTs. For the latter, we have chosen a model independent approach and then a phenomenological 
model with physics-driven parameters.  95% CL  upper limits on the normalised energy density from the CBC 
background of the order of 6x10-9 are placed. The LIGO-Virgo GW data has proved useful to place constraints on 
strong FOPTs at large temperatures.

Second analysis approach: phenomenological model

We can exclude these 
regions, that 
correspond to small β 
and large T

Data do not show evidence for any signal 
from FOPTs, as the Bayes factor between 
signal and noise shows:

We use the Bayes factors to show 
preference of one model over another: 

where N  is given by evaluating the log likelihood with 
𝝮gw=0 , and p(θgw)  is the prior on the GW model 
parameters.
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α : strength of FOPT
β : inverse duration of FOPT

Romero, Martinovic, Callister, Guo, Martinez, 
Sakellariadou, Yang, Zhao, PRL 126 (2021) 15, 151301

O1+O2+O3: 
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Footprints of pop III stars in the GWB

Martinovic, Perigois, Regimbau, Sakellariadou, 2109.09779 

2G detector networks: pop III is practically invisible and its contribution to the global SNR is negligible

To uncover pop III stars, we need to look at residual backgrounds, i.e. to subtract individually detected 
merger events
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Footprints of pop III stars in the GWB

Martinovic, Perigois, Regimbau, Sakellariadou, 2109.09779 

2G detector networks: pop III is practically invisible and its contribution to the global SNR is negligible
3G detectors may reveal a pop III background

3

the last scenario by considering two terrestrial networks
of third-generation (3G) detectors: (i) Einstein Telescope
(ET) at the Virgo site, and (ii) ET at the Virgo site with
two Cosmic Explorers (CE) at the LIGO Hanford and
Livingston sites.

Estimates of CBC contributions to ⌦GW from ST sim-
ulations suggest that pop III signal is lost in the pop
I/II foreground. For 2G detector networks – even by
including LIGO-Hanford, LIGO-Livingston, Virgo, LIGO-
India, and KAGRA – pop III is practically invisible and
its contribution to the global SNR is negligible, as it is
shown in [30]. However, 3G detectors such as ET and CE,
may reveal a pop III background. The future detectors
will have unprecedented sensitivity and they will be able
to discover a great number of individual CBCs, thereby
reducing the GWB originating from unresolved CBCs.
For ET+2CE, we uncover pop III after the subtraction of
individually resolved merger events. This follows because
subtraction methods are less e�cient to detect the high
redshift and low frequency pop III CBCs. Being more
di�cult to resolve, binaries from pop III persist, resulting
in a large contribution to the residual CBC background
in 3G detectors.

We compare in Fig. 1 the total and residual background
for the two 3G networks: ET (top) and ET+2CE (bottom).
It confirms that the pop III contribution in ET has a
very small impact on the combined residual background
from pop I/II and pop III, while in ET+2CE the pop
III residual background clearly dominates for frequencies
below ⇠ 20Hz. In addition, Fig. 1 shows a change in
the shape of the background: The peak frequency of pop
III changes slightly while the slope characterising the
end of emission decreases dramatically when we remove
individually detected sources.

To demonstrate the impact of subtraction of resolved
CBCs on the population, we show in Fig. 2 the probability
density of the total redshifted mass, Mz

tot = (1 + z)(m1 +
m2), and the merger rate R(z) as a function of redshift,
between the whole catalogue and the residual one for
ET+2CE. Clearly, the sources remaining in the residual
catalogue are the ones with the highest redshift, a↵ecting
the total corrected mass distribution which is in turn
responsible for the changes in the GWB spectrum. We
will estimate the ET+2CE residual pop III parameters by
filtering the corresponding background and performing a
Bayesian analysis.

Detection method— The stochastic pipeline takes
strain data s̃I,J from detectors, I, J , and constructs cross-
correlation statistics using optimal filters [38]:

ĈIJ(f) =
2

T

Re[s̃⇤I(f)s̃J(f)]

�IJ(f)S0(f)
, (7)

with T the duration of the run, and �IJ (f) the normalised
overlap reduction function as defined in Eq. 4. The estim-
ator is normalised with S0(f) = (3H2

0 )/(2⇡2
f
3) leading

to hĈIJ(f)i = ⌦GW(f). We assume correlated noise not
to be a limiting factor to our detector sensitivity and

Figure 1. Total and residual GWB of ET (top) and ET+2CE
(bottom) detector networks. The pop I/II and pop III con-
tributions are shown in green and red, respectively, with the
combined residual signal shown in black.

Figure 2. Comparison between the total (blue) and ET+2CE
residual (orange) catalogue for redshifted total mass distribu-
tions (top) and merger rates (bottom).

ET + 2CE: we uncover pop III after the subtraction of individually 
resolved merger events

- Subtraction methods are less efficient to detect the high-z and 
low-f pop III CBCs
- Being more difficult to resolve, binaries from pop III persist, 
resulting in a large contribution to the residual CBC background 
(dominant for f below ~ 20 Hz)
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These further away stars will lead to more 
redshifted frequencies and therefore be 
detected in their merger and ringdown phases

Relationship between peak frequency and redshifted total mass

Detection of pop III GWB and estimation of the peak frequency could reveal important 
information, such as the average redshifted total mass

4

consider all noise to be gaussian. The variance is

�
2
IJ(f) ⇡ 1

2T�f

PI(f)PJ(f)

�
2
IJ(f)S2

0(f)
. (8)

Let us construct a gaussian log-likelihood,

p(ĈIJ(f |✓)) / exp

2

4�1

2

X

IJ

 
ĈIJ(f) � ⌦GW(f |✓)

�IJ(f)

!2
3

5 ,

(9)

where ⌦GW(f |✓) represents the GWB model with para-
meters ✓. This allows us to estimate the model parameters
by finding the best-fit to the cross-correlation data and
minimising the likelihood function. Note that we have
made the simplifying assumption that the log-likelihood
of a detector network is the sum of log-likelihoods of the
individual baselines. To compare models and find which
ones fit data better, we perform model selection with
Bayes factors. Bayes factor, BM1

M2
, is defined as the ratio

of evidences of model M1 to model M2, and if large and
positive, demonstrates preference for M1 over M2.

Typically, we model a CBC signal as ⌦GW(f) =
⌦ref (f/fref)2/3, with fref = 25 Hz. This is because the
CBCs detected so far have low masses that would lead to
an inspiral signal in the low-frequency range. This can be
seen in Fig. 1 where the total GWB from pop I/II and
III in 3G detectors are presented. The pop III spectrum
shows clear deviation from a 2/3 power law, because these
further away stars will lead to more redshifted frequencies
and therefore be detected in their merger and ringdown
phases. We test search filters di↵erent from a 2/3 power
law to investigate if the deviation from pop I/II signal can
be identified in a parameter estimation study. Motivated
by the shape of the residual pop III signal in Fig. 1, we
consider the following filters:

• power law with varying spectral index (PL)

⌦
PL
GW(f) = ⌦ref (f/fref)

↵ (10)

• broken power law (BPL)

⌦
BPL
GW (f) =

(
⌦peak(f/fpeak)↵1 for f  fpeak,

⌦peak(f/fpeak)↵2 for f > fpeak.
(11)

• smooth BPL

⌦
SBPL
GW (f) = ⌦peak (f/fpeak)

↵1 [1+(f/fpeak)
�](↵2�↵1)/�.

(12)

• triple BPL

⌦
TBPL
GW (f) =

8
><

>:

⌦peak(f/f
(1)
peak)

↵1 for f  f
(1)
peak,

⌦peak(f/f
(1)
peak)

↵2 for f
(1)
peak < f  f

(2)
peak,

k⌦peak(f/f
(2)
peak)

↵3 for f > f
(2)
peak,

(13)

where k = (f (2)
peak/f

(1)
peak)

↵2 ensures continuity of the
piecewise function.

The priors for each model’s parameters can be found in
the Appendix. If any of the filters above are preferred over
a 2/3 filter, this could be an indication of the presence of
a pop III signal.
Implications— In the case of a detection, we exam-

ine whether we can constrain the mass/redshift distribu-
tion from the optimal search parameters. Following the
GWB expression (Eq. (2)), we see that the parameters im-
pacting the background shape are the redshift-dependent
merger rate and the black holes’ mass distribution. To
understand how these population characteristics relate
to model parameters, such as peak frequency and slope,
we generate multiple spectra. We make simplifying as-
sumptions about our progenitors by assuming spinless,
equal-mass binaries [39]. We fix the merger rate and vary
the intrinsic mass input, observing how the shape of the
GWB spectrum changes. The results we find, however,
change with a di↵erent choice of merger rate, as described
in the Appendix. This is because there is a degeneracy
between the e↵ects that merger rate and mass distribution
have on the GWB [23]. We thus study the dependence
of ⌦GW on the redshifted total mass of the population,
M

z
tot = (1 + z)(m1 + m2), which is related to the merger

rate, and find a relationship between the mass and the
peak frequency of the spectrum.

We generate GW spectra with a merger rate from ST,
varying the redshifted total mass, and we find an agree-
ment (within 10%) between redshifted ringdown frequency
and the peak of the spectrum, see Table I. We obtain
the same agreement if we use the merger rate from [23],
suggesting once more that an estimate of the peak fre-
quency can be used to constrain the average redshifted
total mass of the population. This relationship, therefore,
holds independently of the model used for the evolution
of the pop III binaries.

Mz
tot fpeak fz

ring % di↵erence

100 166.2 165.8 0.20

200 83.7 82.9 1.0

300 56.5 55.3 2.1

400 43.1 41.4 3.9

500 35.2 33.2 5.7

Table I. Variation of the peak of GWB spectra with a change
in redshifted total mass. We find agreement between the peak
frequency and the redshifted ringdown frrequency.

Results— We simulate one year of observation time
with the ET+2CE network, taking the CBC background
from the ST catalogue. We find the best-fit models to the
residual GWB that remains after subtracting the indi-
vidual sources. A model selection study shows preference
for other filters over a 2/3 PL, see Table II. The models
with a broken power law shown in the last 3 rows are
clearly favoured over a single power law model. However,
we do not observe a great increase in Bayes factor for the
smooth and triple BPL over just a BPL. Therefore, we
conclude that a BPL filter is su�cient for a pop III GWB

Results

model, M ln BM
2/3

power law 29 000
broken power law 46 000

smooth broken power law 47 000
triple broken power law 46 000

Varying-↵ power law fit to residual
GWB spectrum of pop I+II+III from
the ST simulation.
The ↵ estimate is different from the
characteristic 2/3 for the inspiral phase.
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We can constrain very well the peak frequency of the spectrum with a broken power law filter
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SGWB from second order scalar perturbations: information about early universe

- PBH formation through large curvature perturbations during inflation
Strong SGWB generated at 2nd order in perturbation theory from scalar perturbations

O1+O2+O3:  upper limits on the amplitude of power spectrum and  
on the fraction of the DM in terms of ultralight PBHs

width of peak

Integrated power 
of peak

position of peak

Romero-Rodriguez, Martinez, Pujolas, Sakellariadou, Vaskonen 2107.11660
No evidence for such a SGWB
95% CL upper limits on integrated power of the curvature 
power spectrum peak down to 0.02 at 

For LIGO/Virgo sensitivity:

log-normal shape for 
the peak in curvature 
power spectrum
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- Early universe mechanisms can create parity violation à production of asymmetric amounts of right- and 
left-handed circularly polarised isotropic GWs
- Astrophysical GWB sources are unlikely to have circular polarisation

- Detection of parity violation can allow cosmologically sourced GWs to be distinguished from 
the astrophysically sourced component of the GWB
- Analysis of polarised GWB can place constraints on parity violating theories

- Chern-Simons gravitational term

- Axion inflation

- Turbulence in the primordial plasma: FOPT (EW or QCD) or primordial magnetic fields  
coupled to cosmological plasma 

Observed matter-antimatter asymmetry in the radiation era requires sources of parity violation 
(Sakharov criteria,  1967)

Yagi, Yang (2018)

Crowder, Namba, Mandic, Mukoyama, Peloso (2013)

Martinovic, Badger, Sakellariadou, Mandic , PRD 2021

Gravitational parity violation: info about the early universe 
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For V=0: the correlator of 
unpolarised GWB

Cross-correlator estimator

PV in SGWB

Formalism developed in 0707.0535 ,

hhR/L(f , ⌦̂)h
⇤
R/L(f

0, ⌦̂0)i = �(f � f 0)�2(⌦̂ � ⌦̂0)

4⇡
(I (f , ⌦̂)±V (f , ⌦̂)).

V=0 recovers the usual unpolarised SGWB.

The enegry spectrum is modified,

⌦0
GW = ⌦GW


1 + ⇧(f )

�d1d2
V (f )

�d1d2
I (f )

�
,

where ⇧(f ) = V (f )/I (f ) encodes the degree of polarisation.

⇧(f ) ranges from -1 to 1 (fully left and fully right polarisation).

3 / 18

Polarisation degree
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-1 : fully L polarisation
1 : fully R polarisation
0 : unpolarised isotropic SGWB

Gravitational parity violation: info about the early universe 

Martinovic, Badger, Sakellariadou, Mandic , PRD 2021

There are two relevant SGWB upper limits:
- One that confirms presence of polarised GW signal
- A larger one that estimates the degree of polarisation with confidence

Even if we detect a turbulence signal, we may not be able to deduce its polarisation

O1+O2+O3: No evidence for polarisation



Can we distinguish between astrophysical vs cosmological sources?

Mairi Sakellariadou

Martinovic, Meyers, Sakellariadou, Christensen, PRD 103 (2021) 4, 043023

GW models:

§ CBC background

§ CS background (flat)

§ PT background (smooth broken power law (BPL) )

we fix.                                                     to approximate sound waves contribution  

GW models

- CBC background

⌦CBC(f ) = ⌦2/3

✓
f

25 Hz

◆2/3
.

- CS background (flat)

⌦CS(f ) = const.

- PT background (smooth broken power law (BPL))

⌦BPL = ⌦⇤
⇣ f

f⇤

⌘↵1

"
1 +

⇣ f

f⇤

⌘�
#(↵2�↵1)/�

.

We fix ↵1 = 3, ↵2 = �4,� = 2 to approximate to sound wave
contribution.

4 / 16

GW models

- CBC background

⌦CBC(f ) = ⌦2/3

✓
f

25 Hz

◆2/3
.

- CS background (flat)

⌦CS(f ) = const.

- PT background (smooth broken power law (BPL))

⌦BPL = ⌦⇤
⇣ f

f⇤

⌘↵1

"
1 +

⇣ f

f⇤

⌘�
#(↵2�↵1)/�

.

We fix ↵1 = 3, ↵2 = �4,� = 2 to approximate to sound wave
contribution.

4 / 16

GW models

- CBC background

⌦CBC(f ) = ⌦2/3

✓
f

25 Hz

◆2/3
.

- CS background (flat)

⌦CS(f ) = const.

- PT background (smooth broken power law (BPL))

⌦BPL = ⌦⇤
⇣ f

f⇤

⌘↵1

"
1 +

⇣ f

f⇤

⌘�
#(↵2�↵1)/�

.

We fix ↵1 = 3, ↵2 = �4,� = 2 to approximate to sound wave
contribution.

4 / 16

GW models

- CBC background

⌦CBC(f ) = ⌦2/3

✓
f

25 Hz

◆2/3
.

- CS background (flat)

⌦CS(f ) = const.

- PT background (smooth broken power law (BPL))

⌦BPL = ⌦⇤
⇣ f

f⇤

⌘↵1

"
1 +

⇣ f

f⇤

⌘�
#(↵2�↵1)/�

.

We fix ↵1 = 3, ↵2 = �4,� = 2 to approximate to sound wave
contribution.

4 / 16



Can we distinguish between astrophysical vs cosmological sources?

Mairi Sakellariadou

To compare two models we use Bayes factorsModel selection

Detector Networks

I Hanford, Livinston, Virgo, O4 sensitivity, 1 year of run time
I Cosmic Explorers (CE) at Hanford and Livingston locations,

Einstein Telescope (ET) at Virgo, 1 year of run time

7 / 16

Detector networks

§ Current GW detectors are unable to separate astrophysical from cosmological sources
§ Future GW detectors (CE, ET) can dig out cosmological signals, provided one can 

subtract the loud astrophysical foreground 

3

law:

⌦BPL = ⌦⇤

⇣
f

f⇤

⌘↵1

"
1 +

⇣
f

f⇤

⌘�
#(↵2�↵1)/�

. (2)

For example, numerical simulations find the GW spectrum
due to the sound waves in the plasma [53]

h
2
⌦SW(f) = F (�, H⇤, sw, ↵, g⇤, vw)

(f/fsw)3

[1 + 0.75(f/fsw)2]7/2
,

(3)
where � is the transition strength, H⇤ is the Hubble con-
stant at the time of GW production, sw is the e�ciency
factor, ↵ is the ratio of latent heat released in the phase
transition to the heat of the radiation bath, g⇤ is the num-
ber of relativistic degrees of freedom, vw is the bubble
wall velocity, and fsw = fsw(�, H⇤) is the peak frequency.

If we use Eq. (2) to approximate Eq. (3), then we have
↵1 = 3, ↵2 = �4 and � = 2. Relating ⌦⇤ and f⇤ to the
long list of physical parameters that control the phase
transition is beyond the scope of this study.

III. MODEL SELECTION AND PARAMETER

ESTIMATION

We undertake a Bayesian parameter estimation and
model selection study. For a single GW detector pair, ij,
the log-likelihood is

log p(Ĉij(f)|✓GW) = � 1

2

X

f

h
Ĉij(f) � ⌦GW(f,✓GW)

i2

�
2
ij(f)

� 1

2

X

f

log
⇥
2⇡�

2
ij(f)

⇤
, (4)

where ⌦GW (f) is the model spectrum and ✓GW are the
parameters that define the model. The cross-correlation
estimator, Ĉij(f), is calculated from detector data and is
discussed in detail in [7, 20, 54]. We extend this analysis
to include three GW detectors by adding log-likelihoods
for the individual pairs to construct a multiple-baseline
log-likelihood.

To compare two models, M1 and M2, and make state-
ments about which is more favourable by the data, we
utilise Bayes factors,

BM1
M2

=

R
d✓ p(Ĉij(f)|✓, M1)p(✓|M1)R
d✓ p(Ĉij(f)|✓, M2)p(✓|M2)

(5)

where p(✓|·) is the prior probability of our parameters
given a choice of model. The integrand in Eq. (5) is
the joint posterior distribution of the model parameters,
which is evaluated as part of the evaluation of the Bayes
factors.

For large and positive values of lnBM1
M2

, there is strong
evidence for M1 over M2. Likewise, large and negative

values show preference for M2. Relating this quantity to
a frequentist SNR statistic [1], we have lnB / SNR2 [54].
We use the nested sampler dynesty through the front-end
package Bilby to evaluate Bayes factors for our models,
as well as posterior distributions on the parameters.

While the posterior distribution of ✓GW is evaluated in
conjunction with Bayes factors, we can also analytically
calculate a bound on covariance between model paramet-
ers using the information matrix. This is has been used
for estimating parameter covariance for SGWB models
in other studies as well [38, 55, 56]. For the case of a
Gaussian likelihood with uncorrelated measurements (fre-
quency bins) with an unbiased estimator, the information
matrix is given by

Iij(✓) =
X

f

�(f)�2

✓
@⌦GW(f, ✓)

@✓i

◆✓
@⌦GW(f, ✓)

@✓j

◆
.

(6)

The covariance between model parameters is theoretically
bounded below by the inverse of the information matrix

cov✓ (✓i, ✓j) �
⇥
I�1(✓)

⇤
ij

. (7)

This bound, known as the Cramér-Rao lower bound, can
be exceeded by including, e.g. informative prior informa-
tion. However, the structure of the information matrix can
still o↵er valuable insight into the degeneracy of certain
model parameters with one another and o↵er an intuitive
picture of the parameter estimation problem.

Injected Signal

We consider two types of injections: one containing
a CBC and a cosmic strings background, and another
one containing a CBC and a background due to phase
transitions, see Table I. The background labelled here as
CBC refers to what is left once we subtract the known
CBC contribution, i.e. it is the unresolved astrophysical
background. For the second injection, we choose a broken
power law with exponents ↵1 = 3, ↵2 = �4, and � = 2
which best describes ⌦SW, the sound wave contribution
to ⌦GW. In this case our Bayesian search estimates the
peak frequency, f⇤, as well as the amplitude of the smooth
broken power law, ⌦⇤.
The injection strengths we choose vary from one de-

tector network to another. The instrumental noise is
included at the level of the design sensitivity curves of
the detectors. We consider O4 sensitivity for Advanced
LIGO and Advanced Virgo [57], ET-D for the Einstein
Telescope [58] and CE Wideband for the Cosmic Ex-
plorer [59]. The same prior is used for the recovered
amplitudes, ⌦2/3, ⌦CS, ⌦⇤, all of them log uniformly dis-
tributed between 10�15 and 10�8. All results are presen-
ted for 1 year observation time.
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estimator, Ĉij(f), is calculated from detector data and is
discussed in detail in [7, 20, 54]. We extend this analysis
to include three GW detectors by adding log-likelihoods
for the individual pairs to construct a multiple-baseline
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where p(✓|·) is the prior probability of our parameters
given a choice of model. The integrand in Eq. (5) is
the joint posterior distribution of the model parameters,
which is evaluated as part of the evaluation of the Bayes
factors.
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M2

, there is strong
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a frequentist SNR statistic [1], we have lnB / SNR2 [54].
We use the nested sampler dynesty through the front-end
package Bilby to evaluate Bayes factors for our models,
as well as posterior distributions on the parameters.

While the posterior distribution of ✓GW is evaluated in
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calculate a bound on covariance between model paramet-
ers using the information matrix. This is has been used
for estimating parameter covariance for SGWB models
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Injected Signal

We consider two types of injections: one containing
a CBC and a cosmic strings background, and another
one containing a CBC and a background due to phase
transitions, see Table I. The background labelled here as
CBC refers to what is left once we subtract the known
CBC contribution, i.e. it is the unresolved astrophysical
background. For the second injection, we choose a broken
power law with exponents ↵1 = 3, ↵2 = �4, and � = 2
which best describes ⌦SW, the sound wave contribution
to ⌦GW. In this case our Bayesian search estimates the
peak frequency, f⇤, as well as the amplitude of the smooth
broken power law, ⌦⇤.
The injection strengths we choose vary from one de-

tector network to another. The instrumental noise is
included at the level of the design sensitivity curves of
the detectors. We consider O4 sensitivity for Advanced
LIGO and Advanced Virgo [57], ET-D for the Einstein
Telescope [58] and CE Wideband for the Cosmic Ex-
plorer [59]. The same prior is used for the recovered
amplitudes, ⌦2/3, ⌦CS, ⌦⇤, all of them log uniformly dis-
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ted for 1 year observation time.

log-likelihood 
for a single 
detector pair

Martinovic, Meyers, Sakellariadou, Christensen, PRD 103 (2021) 4, 043023

BBH will not limit observation of primordial backgrounds, but BNS population will limit sensitivity of 3G 
detectors to about 

4

hs1s2i ⇠ Var[s1s2] ⇠ Tobs ) SNR =
hs1s2ip
Var[s1s2]

⇠

p
Tobs (53)

⌦GW ⌧ ⌦CMB ⇡ 10
�5

(54)

⌦GW ⇠ 10
�11

at 10 Hz (55)
Sachdev, Regimbau, Sathyaprakash (2020)



Mairi Sakellariadou

To a first approximation, the SGWB is assumed to be isotropic (analogous to the CMB)

The afterglow radiation left over from the Hot Big Bang

§ its temperature is extremely uniform all over the sky

§ tiny temperature fluctuations (one part 100,000)

Angular power spectrum

CMB
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⁄
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Anisotropies in the GW Background: info about large-scale-structure
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Gravitational wave sources with an anisotropic spatial distribution lead to a GWB 
characterised by preferred directions, and hence anisotropies

3

↵ = 0 (35)

↵ = 2/3 (36)

↵ = 3 (37)

3

↵ = 0 (35)

↵ = 2/3 (36)

↵ = 3 (37)

3

↵ = 0 (35)

↵ = 2/3 (36)

↵ = 3 (37)

Upper limits sky maps of GWs energy flux from a search from point-like sources

Upper limits sky maps of GWs energy flux from a search from extended sources

Anisotropies in the GW Background: info about large-scale-structure

LVC PRD 104 (2021), 2, 022005
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Gravitational wave sources with an anisotropic spatial distribution lead to a GWB 
characterised by preferred directions, and hence anisotropies 1

⌦GW(⌫) = ⌦ref

✓
⌫

⌫ref

◆↵

(1)
Diffraction-limited angular 
resolution Θ on the sky:

3

modes, and hence a full inversion cannot be performed.
Therefore we use a regularized pseudo-inverse (labeled by
the subscript ‘R’ above) to obtain clean maps. We note
here that [

�
��1
R

�
µµ

]1/2 is used as the uncertainty estimate

(standard deviation) of P̂µ.

Di↵erent regularization techniques are employed in
each analysis based on the signal model assumed [54].
For the BBR search we assume that the gravitational-
wave power is confined to a single pixel and there is no
signal covariance between neighboring pixels; hence, the
inversion of the Fisher matrix reduces to the inversion of
its diagonal. However, because of the detector response
function, neighboring pixels are indeed correlated and
hence the BBR results are valid only for a signal model
in which we expect a small number of well-separated
gravitational-wave point sources.

On the other hand, the SHD analysis uses both the
diagonal and o↵-diagonal elements of the Fisher matrix
and as in past searches sets the smallest 1/3 of the eigen-
values to infinity and also uses a finite maximum value of
` [54, 59, 60]. The choice of 1/3 is based on the recovery
of simulated injections carried out in reference [59]. This
analysis is therefore well-suited for identifying extended
sources on the sky, but not point-like sources which re-
quire all the ` modes with ` ! 1. SHD analyses of
the previous two LIGO/Virgo observing runs chose the
maximum ` value `max based on the di↵raction-limited
angular resolution ✓ on the sky. This is determined by
the distance D between detectors and the most sensitive
frequency f in the analysis band [54]:

✓ =
c

2Df
`max =
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✓
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As in the previous directional searches, this method gives
`max values of 3, 4, and 16 for the spectral indices ↵ of
0, 2/3, and 3, respectively, for the Hanford-Livingston
baseline. The most sensitive frequency in the analysis
changes with ↵ and hence we get di↵erent `max for di↵er-
ent ↵. The baseline sensitivity (/ 1/[PIPJ ]) appearing
in Eqs. (10) and (11) acts as a weighting factor multiply-
ing �

`m
IJ (t; f), and hence, the cuto↵ on ` also depends on

the baseline’s sensitivity among the network. Since the
LIGO detectors are more sensitive than the Virgo detec-
tor, `max values are largely determined by the Hanford-
Livingston baseline. Therefore, in this search, we make
the same choices for `max for all baselines in the Hanford-
Livingston-Virgo network.

We note that, as described in [71, 76–78], one could also
start in a pixel basis and transform the resultant pixel-
based maps into spherical harmonic coe�cients. Sam-
pling the full pixel space accounts for the correlations
between small and large angular scales induced by the
non-compactness of the sky response [for details see 77].

In the SHD analysis we calculate P̂`m in the spherical
harmonics basis and express the final result in terms of
Ĉ`, a measure of squared angular power in mode `, which

is given by [59]
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where H0 is the Hubble constant taken to be H0 =
67.9 km s�1 Mpc�1 [79]. Ĉ` has units of sr�2 and Ĉ` = 1
corresponds to su�cient energy density in mode ` alone
to have a closed universe. In addition, we also transform
P̂`m to P̂⇥ and produce ⌦̂↵,⇥ given by [59]

⌦̂↵,⇥ =
2⇡2

3H2
0

f
3
ref P̂↵,⇥ , (17)

which is the gravitational-wave energy density in solid
angle ⇥ normalized by the critical energy density needed
to close the Universe.
In the BBR analysis, we estimate P⇥ in a pixel basis

and report the final result in terms of the gravitational-
wave energy flux from solid angle ⇥ given by

F̂↵,⇥ =
c
3
⇡

4G
f
2
ref P̂↵,⇥ , (18)

where G is the gravitational constant.
In the NBR analysis we measure gravitational-wave

strain power Ĥ(f) as a function of frequency at spe-
cific sky locations by setting ↵ = 3 for H(f) and not
summing over frequency in Eqs. (10) and, (11) i.e.,
Ĥ(f) = X

IJ
⌫ (f). However, the NBR analysis must con-

sider source-dependent e↵ects when performing a search.
In the case of Scorpius X-1, a low-mass X-ray binary sys-
tem, gravitational-wave frequencies are expected to be
broadened [62] due to the binary motion of the source
and the orbital motion of Earth during the observation
time [80]. To account for these Doppler shifts, we sum
the contributions in multiple frequency bins and create
optimally-sized combined bins at each frequency. For
more details of combining frequency bins for Scorpius
X-1 see Ref. [54]. In the directions of SN 1987A and
the galactic center, we combine 3 and 17 frequency bins
respectively to account for the spread of an expected
monochromatic signal due only to the rotation and or-
bital motion of the Earth [54]. Since the Galactic cen-
ter is at a lower declination, the e↵ect of the Earth’s
motion becomes significant and hence we combine more
frequency bins.
To perform these three analyses, cross-correlation data

from each baseline is folded into one sidereal day by tak-
ing advantage of a temporal symmetry of the observa-
tions induced by the Earth’s daily rotation about its axis.
We therefore reduce the computational cost of this search
by a factor equal to the total number of days of observa-
tion [69].
For the NBR and BBR analyses, the folded data are

analyzed by Python-based pipeline, PyStoch [70], which
takes advantage of the compactness of the folded data
and the standardization and optimizations of the well-
known HEALPix (Hierarchical Equal Area isoLatitude
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where G is the gravitational constant.
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broadened [62] due to the binary motion of the source
and the orbital motion of Earth during the observation
time [80]. To account for these Doppler shifts, we sum
the contributions in multiple frequency bins and create
optimally-sized combined bins at each frequency. For
more details of combining frequency bins for Scorpius
X-1 see Ref. [54]. In the directions of SN 1987A and
the galactic center, we combine 3 and 17 frequency bins
respectively to account for the spread of an expected
monochromatic signal due only to the rotation and or-
bital motion of the Earth [54]. Since the Galactic cen-
ter is at a lower declination, the e↵ect of the Earth’s
motion becomes significant and hence we combine more
frequency bins.
To perform these three analyses, cross-correlation data

from each baseline is folded into one sidereal day by tak-
ing advantage of a temporal symmetry of the observa-
tions induced by the Earth’s daily rotation about its axis.
We therefore reduce the computational cost of this search
by a factor equal to the total number of days of observa-
tion [69].
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Cosmic strings

Figure 1: A simulated Nambu-Goto cosmic string network. The long strings are shown in black, with the loops in red. From Ref. [1].

Cosmic strings are one-dimensional topological defects that may have been formed in the early Universe due
to spontaneous symmetry breaking in a cosmological phase transition [2]. They are a generic prediction of
grand unified theories [3]. To leading order their dynamics are described by the Nambu-Goto action, whose only
free parameter is µ, the string tension. One usually considers the dimensionless combination Gµ, where G is
Newton’s constant. This is related to ⇤NP, the “new physics scale” at which the strings are formed,

Gµ ⇠

✓
⇤NP

MPl

◆2

. (1)

The string network is characterised by O(1) “long” (i.e. super-horizon) strings per Hubble volume, which
intersect themselves to cut o↵ many small loops. These loops oscillate due to their tension and decay through
gravitational-wave (GW) emission.

Gravitational-wave emission

Figure 2: Illustrations of a cusp (left) and a kink (right). From Ref. [4].

Cosmic string loops are strong sources of GWs, emitted mainly through “cusps”, which are sharp transient
features that form as the loop oscillates, and “kinks”, which are discontinuities that propagate around the loop,
beaming GWs like a lighthouse. The incoherent superposition of GWs from many loops leads to a stochastic
GW background (SGWB), whose intensity at frequency f in sky direction r̂ relative to the cosmological critical
density ⇢c is described by the density parameter,

⌦gw(f , r̂ ) ⌘
1

⇢c

d3⇢gw
d ln f d2r̂

. (2)

The cosmic string SGWB allows us to probe new physics at energies inaccessible to collider experiments.

Figure 3: Frequency spectrum of the isotropic component of the cosmic string SGWB for a range of values of Gµ. Shown in grey are the
sensitivity curves for a range of current and future GW observatories after 10 years of observation.

Stochastic gravitational-wave background anisotropies

Figure 4: Simulated full-sky map of the cosmic string SGWB. Inset shows a 10� ⇥ 10� patch.

The intensity of the SGWB is not perfectly uniform, but fluctuates across the sky due to the correlated structure
of the loop network and the inhomogeneities of the intervening spacetime geometry. These anisotropies in
the SGWB are analogous to those in the temperature of the cosmic microwave background (CMB), and are
characterised by the angular power spectrum
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S2
d2r̂ P`

�
r̂ · r̂ 0

� ⌦
⌦gw(r̂ )⌦gw

�
r̂ 0
�↵

. (3)

Figure 5: The observer’s motion relative to the cosmic rest frame induces a kinematic dipole.

Results

We find that for smaller values of Gµ, even though the isotropic component of the SGWB becomes much
weaker, the anisotropies can be greatly enhanced. This could potentially help us probe a much broader range of
scales for new physics with current and future GW observatories.

Figure 6: The cosmic string angular power spectrum for various values of Gµ.
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Conclusions

A detection of the GWB from unresolved compact binary coalescences is expected to be made by Advanced 
LIGO and Advanced Virgo at their design sensitivities

- Detecting a GWB in the presence of correlated magnetic noise

- Simultaneous estimation of astrophysical and cosmological GW backgrounds with terrestrial interferometers

- GWB will give information about astrophysical models (compact binaries), beyond the standard model 
particle physics (cosmic strings, phase transitions), large-scale-structure, early universe cosmology (inflation, 
parity violation), gravity theories

- Isotropic and directional searches are an ongoing effort of the LIGO/Virgo/KAGRA Collaboration
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