Einstein Telescope conceptual design discussion a brief introduction

Andreas Freise, ET CoBA Meeting, 28.10.2021, ET-0438A-21

Evaluating different ET instrument options

- codes to evaluate the science output/impact
- curves.
- confidence in the result.

• **The method:** to evaluate the 'benefit' of different detector options, we generate sensitivity curves that describe the instrument performance, then use data-analyse

• With GWINC we have a powerful common tool to generate and compare sensitivity curves. Design also includes issues that are not (yet) included in the sensitivity

• We will present the sensitivity curves that the ISB is preparing for this activity. Key part: discussion on the limits of this approach and how to work towards a joint

Einstein gravitational wave Telescope

Conceptual Design Study

(2011)

00

.

Einstein Telescope **Design Report Update 2020**

ESFRI Application

ET Steering Committee Editorial Team

Document available in the ET document system: https://apps.et-gw.eu/tds/ql/?c=15418

Conceptual design discussion

- curve, where relevant research had been completed by ET researchers.
- reviews and a technical design.

for this cost-benefit analysis.

• ESFRI update: Most effort focussed on the underground infrastructure, we decided early to not update the conceptual detector design unless for correcting errors. However, we did fix a few problems, such as beam focussing or the quantum noise

• Ongoing ISB work: update the design more broadly over two years, towards design

• Today: discussion on items in the conceptual design that are or can be critical

Design Update Work some examples

- Similar plots in https://apps.et-gw.eu/tds/ql/?c=13309

'Some consideration on the ET infrastructure, the case for a Sardinian site' G. Losurdo 20.04.2018 (not in TDS?)

Evolving the cavern and tunnel design

CORNER CAVERN

ET Symposium, April 20th, 2018

TUNNEL SECTION – \bigotimes_{in} 10m

ET Symposium, April 20th, 2018

Implenia civil engineering study

- We want to have small beams in the central interferometer.
- This could be achieved by focusing the beam down between IM and BS

Better Beam Sizes

About 10000m

In order to reduce problems from imperfect optics, the focusing should be rather gentle.

A Freise, 3rd general ET workshop 24/11/2010

EM

New telescope design, and full optical layout

Correcting QNR curve for SRC length

P. Jones et al., 'Implications of the Quantum Noise Target for the Einstein Telescope Infrastructure Design' (2020), https://arxiv.org/abs/2003.07468

Einstein Telescope key design parameters

Parameter	ET-HF	ET-LF
Arm length	1 0 km	10 km
Input power (after IMC)	500 W	3 W
Arm power	3 MW	18 kW
Temperature	290 K	10-20 K
Mirror material	fused silica	silicon
Mirror diameter / thickness	62 cm / 30 cm	45 cm/ 57 cm
Mirror masses	200 kg	211 kg
Laser wavelength	1 064 nm	1550 nm
SR-phase (rad)	tuned (0.0)	detuned (0.6)
SR transmittance	10%	20 %
Quantum noise suppression	freq. dep. squeez.	freq. dep. squeez.
Filter cavities	$1 \times 300 \mathrm{m}$	2×1.0 km
Squeezing level	10 dB (effective)	10 dB (effective)
Beam shape	TEM ₀₀	TEM ₀₀
Beam radius	1 2.0 cm	9 cm
Scatter loss per surface	37 ppm	37 ppm
Seismic isolation	SA, 8 m tall	mod SA, 17 m tall
Seismic (for $f > 1 \text{ Hz}$)	$5 \cdot 10^{-10} \mathrm{m}/f^2$	$5 \cdot 10^{-10} \mathrm{m}/f^2$
Gravity gradient subtraction	none	factor of a few

ET sensitivity curve

- from ET-D significantly
- similar curve to ET-D, with known model errors corrected.
- better maintenance of that code, see code and parameters at: https://gitlab.et-gw.eu/et/isb/interferometer/ET-NoiseBudget
- Current status, see the following talks.

• The official ET sensitivity curve is `ET-D' from 2011, ESFRI correction did not deviate

• New dedicated ISB working group `Observatory design and noise budget'. One of its task is to create and coordinate the official sensitivity curve. First task: re-create a

Moved to Python-based GWINC code (pyGWINC) to benefit from recent updates and

ET R+D tasks

activities, such as prioritisation and towards making a project plan

	► C	D	E	F	83	G	Н	1	J
1	Number (automatic)	Task name	Task Level	Divs	ion	ET LF	ET HF	Keywords	Task description (a few sentences to give a clear and unique description pf the task)
2	1	Development of new or extension of optical simulation packages	1 -	IFO	*	\checkmark	\checkmark	simulation	
3	1.1	Development of optical simulations including polarisat	2 -	IFO			\checkmark	simulation	Essential to derive birefringence specifications. Must be able to includ birefringence maps
4	1.2	Development of 3D ray tracing tool	2 -	IFO		\checkmark		simulation	A software to simulate in 3D the main interferometer beam but also all pick off beams from tilted surfaces. (up to a certain order or power). M derive in 3D the center of mass of the optics.
									Development of a package to simulate the lock acquisation and control

175	1	Magnetic Noise computation for ET	1	*	ANM	•	\checkmark	simlation, design, hardware	New simulation tools will be required for setting empirically derived lim acceptable fields and force couplings.
176	20.1	Magnetic test facility	2	÷	ANM	÷	\checkmark	hardware	Stray fields and noise-impact of materials placed close to the testmase be quantified empirically, similar to vacuum-contamination tests.
177	20.2	Actuator performance	2	*	ANM	•	\checkmark	hardware, design	(with SUS) Actuators close to the LF payload must meet stringent stra requirements.
178	20.3	Magnetic shielding	2	*	ANM	•	\checkmark	simulation, design	Shielding of the test-mass and/or magnetic sources will need careful c Correction of DC gradients may be corrected with Helmholtz coils.
179	20.4	Underground environment limits	2	×	ANM		\checkmark	collaboration, site testing	Investigate expected levels of field, fluctuations, and gradients in underground environments. Collaboration with, eg, MIGA, KAGRA and others will be helpful.

• We are compiling a complete R+D task list, to serve as base data set for follow-up

List of of R+D discussion items

After the following talks on the sensitivity studies, we want to discuss the confidence we have in the models, and in particular collect 'homework' items for the in-person workshop.

Some topics mentioned recently:

- Large test masses
- Silicon mirrors
- Cryogenic operation of mirror
- Seismic pre-isolation
- Control noise reduction
- Newtonian noise subtraction
- High-power operation
- ...

... end

