Cost-Benefit Analysis Team (CoBA) Remote Workshop, October 28 2021

SCIENCE IMPACT FOR DIFFERENT MACRO-OPTIONS and GEOMETRY of ET

- a. Methodology
- b. Preliminary results

M. Branchesi on behalf of B. Banerjee, U. Dupletsa, B. Goncharov, and Jan Harms

Methodology to compare different scenarios

We evaluate:

 the impact of the different ET macro-options and geometry using **basic metrics**; detection efficiency, SNR ditribution, and sky-localization capabilities for binary neutron stars (BNSs) and binary black holes (BBHs) populations;

Possibly to do:

 the impact on achievements related to intermediate mass blackhole (IMBHs) and primordial black-hole (PBHs) science, MM, cosmology, NS EOS, stochastic;

DIFFERENT MACRO-OPTIONS and GEOMETRY

opt		A)	B) ET-LF cryo	C) ET –LF room	Cost
		ET-HF		temperature	Infrastructure
0	ET Triangle				
1	ET Triangle but 15 km side		•		
2	2 L x 15 km x 1 ITF x underground				
3	2 L x 20 km x 1 ITF x underground				
4	2 L x 15 km x 2 ITF x underground		-		
5	2 L x 20 km x 2 ITF x underground				
6	1 L x 20 km x 2 ITF x underground				
7	Surface Detector ??				

On Sunday October 17 we received from ISB the Xylophone (HF+LF) cryogenic for 10 km, 15 km and 20 km IFO

SENSITIVITY CURVES

Triangle vs 2L network

2L misaligned of 45°

Simulation Methodology

- Fisher matrix approach
- **Astrophysical assumptions** (consistent with O3a LIGO and Virgo observations GWTC-2):
 - BNS: rate distribution as function of z from last updates of Santoliquido et al. 2021, MNRAS, Gaussian mass distribution centered around ~1.3 Msun and with std ~0.1 Msun, [1.2-2.4] Msun, no spin
 - BBH: rate distribution as function of z from (Regimbau et al. 2017, SF from Vangioni et al. 2015), broken power-law mass distribution consistent with O3a LIGO and Virgo observations (GWTC-2)
- For the injections we use TAYLORF2 waveforms
- 25k injections for each scenarios (for detection efficiency entire redshift range and for sky-localization z < 0.8)

BNS: comparison delta (10 km), **2L (10 km)** aligned and misaligned

Detection efficiency

BNS: comparison delta (10 km), **2L (10 km)** aligned and misaligned

BNS: comparison delta (10 km), **2L (15 km)** aligned and misaligned

BNS: comparison delta (10 km), **2L (15 km)** aligned and misaligned

Number of signals

Scenario	Number of detections per year	Number of detections per year Sky-loc < 20 deg ²	Number of detections per year Sky-loc < 100 deg ²
Triangle (10 km)	42732	68	514
2L(10 km) aligned	37368	14	80
2L(10 km) misaligned	35784	60	370
2L(15 km) aligned	90036	16	198
2L(15 km) misaligned	85680	102	860

BNS: comparison delta (10 km), **2L (20 km)** aligned and misaligned

BNS: comparison delta (10 km), **2L (20 km)** aligned and misaligned

Scenario	Number of detections per year	Number of detections per year Sky-loc < 20 deg ²	Number of detections per year Sky-loc < 100 deg ²
Triangle (10 km)	42732	68	514
2L(10 km) aligned	37368	14	80
2L(10 km) misaligned	35784	60	370
2L(15 km) aligned	90036	16	198
2L(15 km) misaligned	85680	102	860
2L(20 km) aligned	109584	34	272
2L(20 km) misaligned	108072	150	1230

BNS: comparison delta (15 km), **2L (15 km)** aligned and misaligned

BNS: comparison delta (15 km), **2L (15 km)** aligned and misaligned

BNS: comparison delta (15 km), **2L (20 km)** aligned and misaligned

BNS: comparison delta (15 km), **2L (20 km)** aligned and misaligned

Scenario	Number of detections per year	Number of detections per year Sky-loc < 20 deg ²	Number of detections per year Sky-loc < 100 deg ²
Triangle (10 km)	42732	68	514
Triangle (15 km)	100080	190	1326
2L(15 km) aligned	90036	16	198
2L(15 km) misaligned	85680	102	860
2L(20 km) aligned	109584	34	272
2L(20 km) misaligned	108072	150	1230

Null- Stream study

BBH source-frame mass= 50-100 Mo

produced by Boris with the help of Alex Nitz, with PyCBC code

NULL STREAM:

- contribution will depend on the rate of non-Gaussian noise, which is not clear at the moment
- expect it to be a higher level and possibly increasing towards higher redshifts.

The null stream has a potential to:

- (a) remove the non-Gaussian noise;
- (b) Decrease the detection threshold;
- (c) to push the BBH detection horizon further in redshift, where a lot of interesting physics happens

Null-Stream study

produced by Boris with the help of Alex Nitz, with PyCBC code

SNR for population of glitches (=incoherent signals in one detector) glitches in orange are the ones which survived a veto based on the null stream - "survived" glitches are below Gaussian noise levels.

Null- Stream study

produced by Boris based on the Bayesian approach to null stream, with Bilby

Detection efficiency

Triangle 10 km

Detection efficiency

Triangle 10 km

	Scenario	Number of detections per year	Number of detections per year Sky-loc < 20 deg ²	Number of detections per year Sky-loc < 100 deg ²
	Triangle (10 km)	42732	68	514
SINK > 9	Triangle (15 km)	100080	190	1326
]	Triangle (10 km)	87696	64	594
SNR > 7	Triangle (15 km)	185328	148	1410
	2L(15 km) aligned	90036	16	198
SNR >9 SNR > 7	2L(15 km) misaligned	85680	102	860
Different injected	2L(20 km) aligned	109584	34	272
population	2L(20 km) misaligned	108072	150	1230

SNR distributions

BBH simulations

SNR >9 Triangle 10 km, SNR >9 2L

BBH simulations

SNR >9 Triangle 15 km, SNR >9 2L

BBH simulations – Sky localization

sky localization efficiency for BBHs (100k binaries)

sky localization efficiency for BBHs (100k binaries)

To agree on:

- Simulation procedure?
- Metrics
- Null-stream? SNR thhreshold?
- IMBH, PBH, Stochastic, Hubble constant, NS EOS, joint detections?

WORK DONE FOR ESFRI

Evolution scenarios

ESFRI

ET: evolutionary scenarios

- Scenario1:
 - High power + squeezing issues affecting ET-HF performance
 - ET-LF missing
- Scenario 2:
 - ET-HF full sensitivity
 - ET-LF affected by severe noise issues
- Scenario 3:
 - ET-HF full sensitivity
 - ET-LF affected by some noise issues

COMPACT OBJECT BINARY POPULATIONS

BINARY NEUTRON-STAR MERGERS

ESFRI

BINARY BLACK-HOLE MERGERS

Sampling **astrophysical populations** of binary system of compact objects along the cosmic history of the Universe

ESFRI

BINARY NEUTRON-STAR SKY LOCALIZATION

#events sky-localization
< 20 deg² < 100 deg²

ET-S1	3	8
ET-S2	10	60
ET-S3	40	290
ET	150	1110

ESFRI

Cosmology: Hubble constant measurements from GW standard sirens

ESFRI

MASS COVERAGE and INTERMEDIATE MASSIVE BHs

Detecting intermediate massive BHs in the volume of the Universe where these rare events are expected to happen

PRIMORDIAL BLACK-HOLES

ESFRI

Disentangle astrophysical PoPIII from primordial BHs

ALL THE SIMULATION USE SNR=8

THERMAL EMISSION - KILONOVAE

KILONOVA PHYSICS, NUCLEOSYNTHESIS, NUCLEAR PHYISCS and COSMOLOGY

PHYISCS and COSMOLOGY

ET+Vera Rubin synergy

VERA RUBIN OBSERVATORY ToO:

- three epochs of 600s observations in two filters
- detection efficiency is larger than 99% up to z=0.3

COSMOLOGY: Hubble constant measurement from GW standard sirens with sub-percent precision!

Jo dete	oint ET/VRO ctions per year	Fraction of VRO telescope time
ET	60	6%
ET+2G	170	17%

HIGH-ENERGY

RELATIVISTIC JET PHYSICS, GRB EMISSION MECHANISMS, COSMOLOGY and MODIFIED GRAVITY

COSMOLOGY and MODIFIED GRAVITY

ET+THESEUS synergy

