ET noise budget update for CoBA

T. Zhang, <u>S. Danilishin</u> ET Cost-Benefit Analysis workshop Cortona, Italy 2021.11.24

ET-0453A-21

Contents:

- 1. Update on changes in ET Noise Budget since October 28th CoBA Workshop
- 2. Current status of noise sources (ETLF + ETHF)
 - a. ET-LF
 - b. ET-HF
- 3. Other arm lengths
- 4. Room-temperature ET LF

Updates on ET Noise Budget since October 28th, 2021

- Suspension TN model updated with the great help of P. Puppo ⇒ now in pyGWINC: triple branched pendulum model with violin modes, parameter files used for 2011 ET Design Study
- Active discussions in Optics division on the LF coating options (google document) ⇒
 - > Silica-Tantala coating@10K not ideal, but can be used for the time being (Optics Division)
 - > Implementation of multimaterial coating code is in progress (S. Steinlechner)
- Room-temperature ET LF variant studied (J. Harms)
- 'Official' (with quotes!) sensitivity curves for CoBA generated and shared with OSB. Generated 10km/15km/20km variants for 2 temperature scenarios: LF@10K and LF@290K.

Curves and the notebook that generates them are publicly available here: https://gitlab.et-gw.eu/et/isb/interferometer/ET-NoiseBudget/-/tree/master/CoBA/CoBA_sensitivity_curves and here (notebook): https://gitlab.et-gw.eu/et/isb/interferometer/ET-NoiseBudget/-/blob/master/OtherArmLength_CoBA.ipynb

ETLF

10km ET I E		10 ⁻²¹ ET LF@10K: Quantum Noise	
		ET LF@10K, 10km: Total ––– Filter Cavity	
Arm length L [km]	10	ET LF@10K 10km: Quantum Injection loss	
Laser wavelength λ [nm]	1550	10^{-22} Arm Loss Quadrature Phase	
Arm circulating power P _c , [kW]	18	SEC Loss ····· ET-D 2011 Design	
ITM transmissivity, T	0.007		
Arm loss per mirror, [ppm]	37.5	$\frac{1}{2}$ 10-23	
SRM transmissivity, T _{SRM}	0.2		
SRC detuning, φ_{SRC} [rad]	0.6		
SRC round-trip loss, [ppm]	1000	¥ 10-24	
PD readout loss, [%]	3		
Squeezing		QuantumNoise — Injection AS Readout	
Injected squeezing, r _{dB} [dB]	15		
Injection loss, [%]	2		
FC1: Length, [km]	1		
Transmissivity, Ti	1.27e-4	Frequency	
Detuning [Hz],	-6.88	10-25	
Round-trip loss [ppm]	11	10^0 10^1 10^2 1 Frequency[Hz]	
FC2: Length, [km]	1		
Transmissivity, Ti	4.8e-4	Check relevant parameters in the Laser,	
Detuning [Hz]	25.3	Ontran and groups and solutions of	
Round-trip loss [ppm]	11	optics and squeezer sections of	
		ETLF/ifo.yaml file on <u>ET-NoiseBudget git</u>	

- Code and parameters obtained from P.
 Puppo to reproduce the *triple branched pendulum suspension* used for the ET Design Study 2011 noise curves;
- Violin modes contribution included;
- Current design for LF uses branched
 pendulum model with silicon as material for = 10⁻²⁴
 TM and RM suspensions, and titanium as
 material for marionetta suspension;
- Material Database is currently being created on <u>ET-ISB Wiki</u> jointly by Suspension and Optics divisions. We wait for final parameters to put in the model.

Check relevant parameters in the **Suspension** section of **ETLF/ifo.yaml** file on <u>ET-NoiseBudget git</u>

Suspension thermal noise

10km ET LF No changes after 28th Oct.

- SiO₂/Ta₂O₅@10K coating is still used in the model (<u>Optics Division doc</u>)
- <u>Material Database</u> is currently being created on <u>ET-ISB Wiki</u> jointly by Suspension and Optics divisions. We wait for final parameters to put in the model.
- The goal is to include the multi-material coating in <u>https://doi.org/10.1103/PhysRevLett.122.231102</u>, which is currently out of the capability of official GWINC. Work in progress (S. Steinlechner)

Material (high/low)	Tantala/Silica
Young's modulus [Pa]	123e9/72e9
Poisson's ratio	0.28/0.17
Mechanical loss angle	7e-4/5e-4
Temperature, [K]	10 K
Mirror Diameter	45cm
Mirror thickness	57cm

Coating Brownian noise

Check relevant parameters in the Materials.Coating section of ETLF/ifo.yaml file on ET-NoiseBudget git

Substrate Brownian noise

No changes after 28th Oct.

10K temperature

Material	Silicon
Temperature, [K]	10 K
Young's modulus [Pa]	1.62e11
Poisson's ratio	0.22
Mechanical loss angle	3e-13 f ¹
Mirror Diameter	45cm
Mirror thickness	57cm
Beam size	9cm

Reference:

Measured loss ~3e-9 at 10K and at 14kHz. R. Nawrodt *et al.* 2008 J. Phys.: Conf. Ser. **122** 012008 Frequency dependence of the loss: Lam, C. C., & Douglass, D. H. (1981)

Substrate thermoelastic noise:

No changes after 28th Oct.

Material	Silicon
Specific heat [J · kg ⁻¹ · K ⁻¹]	0.276
Thermal conductivity [W·m ⁻¹ ·K ⁻¹]	1000
Thermal expansion coeff $[K^{-1}]$	4.8e-10
Temperature, [K]	10 K
Mirror Diameter	45 cm
Mirror thickness	57 cm

Check relevant parameters in the Materials.Substrate section of ETLF/ifo.yaml file on ET-NoiseBudget git

Seismic noise: No changes after 28th Oct.

Seismic noise is from the coupling of rayleigh waves and body waves through 17m seismic isolation structure in three degrees of freedom (horizontal-horizontal, vertical-to-horizontal, tilt-horizontal)

Bodywaves: 5 times Peterson's LNM

Rayleigh waves: Logarithmic average of LNM and HNM.

Suspension TF: Data vector from Lucia Trozzo.

Reference: Rev. Sci. Instrum. 91, 094504 (2020); https://doi.org/10.1063/5.0018414

Check relevant parameters in the **Seismic** section of **ETLF/ifo.yaml** file on <u>ET-NoiseBudget git</u>

Newtonian noise: No changes after 28th Oct.

Newtonian noise is modelled as a combination of contribution from Seismic waves (Body waves, Rayleigh waves), Atmospheric noise and Cavern noise.

The formulas and acoustic spectrum assumptions are from

Reference: Rev. Sci. Instrum. 91, 094504 (2020); https://doi.org/10.1063/5.0018414

Relevant facility parameters:

300m depth, 15m cavern radius.

Check relevant parameters in the **Seismic** section of **ETLF/ifo.yam1** file on <u>ET-NoiseBudget git</u>

Coating Thermo-optic noise No changes after 28th Oct.

Material	Tantala/Silica
Thermal expansion coeff [K ⁻¹]	3.6e-6/5.1e-7
dn/dT [K⁻¹]	1.4e-5/8e-6
Thermal Diffusivity [m ² /s]	33/1.38

Note: needs check

Check relevant parameters in the Materials.Coating section of ETLF/ifo.yaml file on ET-NoiseBudget git

Excess noise:

The excess noise consists of phase noise and damping noise.

We assume 5e-8 H2. (we expect H2 less than this pressure but some more molecules, like H20, HC(250) etc).

Damping noise is modelled based on Cavalleri's paper: https://doi.org/10.1016/j.physleta.2010.06.041

ET HF

Arm length L [km]	10		
Laser wavelength λ [nm]	1064		
Arm circulating power P _c , [kW]	3091		
ITM transmissivity, T	0.007		
Arm loss per mirror, [ppm]	37.5		
SRM transmissivity, T _{SRM}	0.1		
SRC detuning, $\varphi_{_{SRC}}$ [rad]	0.0		
SRC round-trip loss, [ppm]	500		
PD readout loss, [%]	3		
Squeezing			
Injected squeezing, r _{dB} [dB]	15		
Injection loss, [%]	2		
FC1: Length, [km]	0.300		
Transmissivity, Ti	7.7e-4		
Detuning [Hz],	-30.48		
Round-trip loss [ppm]	55		

 10^{1}

Check relevant parameters in the Laser, Optics and Squeezer sections of ETHF/ifo.yaml file on ET-NoiseBudget git

103

 10^{2}

Frequency[Hz]

Suspension thermal noise

- Code and parameters obtained from P.
 Puppo to reproduce the *triple branched pendulum suspension* used for the ET Design Study 2011 noise curves;
- Violin modes contribution included;
- Current design for HF uses branched pendulum model with silica as material for TM, C85 steel for RM suspensions, and maraging steel as material for marionetta suspension
- Material Database is currently being created on <u>ET-ISB Wiki</u> jointly by Suspension and Optics divisions. We wait for final parameters to put in the model.

ET HF 10km: Suspension TN 10^{-21} ET HF 10km: Total ET HF 10km: Suspension TN ET-D 2011 Design 10^{-22} Strain [[1/ Hz] 10⁻²³ 10^{-23} ≦ 10⁻²⁴ OCT 10-24 - 10^{-25} — Total SusTherma Seismic 10^{-26} 10^{-25} 10^{1} 10^{2} 10^{3} Frequency[Hz] 10^{-26} 10^{0} 10^{1} 10^{2} 10^{3} Frequency [Hz]

Check relevant parameters in the **Suspension** section of **ETHF/ifo.yaml** file on <u>ET-NoiseBudget git</u>

Coating Brownian noise No changes after 28th Oct.

Material	Tantala?/Silica
Temperature, [K]	290 K
Young's modulus [Pa]	120e9/70e9
Poisson's ratio	0.29/0.19
Mechanical loss angle	9e-5/1.25e-4
Mirror Diameter	62cm
Mirror thickness	30cm
Beam size	12cm

Note: The mechanical loss is assumed A+ coating, the solution is **Germanium dioxide**,

https://doi.org/10.1103/PhysRevLett.127.071101 , we have not update the exact parameters of GeO2 for ET.

Check relevant parameters in the Materials.Coating section of ETHF/ifo.yaml file on ET-NoiseBudget git

Substrate Brownian noise:

No changes after 28th Oct.

Material	Silica	
Temperature, [K]	290 K	
Young's modulus [Pa]	7.27e10	
Poisson's ratio	0.167	
Mechanical loss angle	7.6e-12 f ^{0.77}	
Mirror Diameter [cm]	62 cm	
Mirror thickness [sm]	30 cm	
Beam size [cm]	9 cm	

Check relevant parameters in the Materials.Substrate section of ETHF/ifo.yaml file on ET-NoiseBudget git

Substrate thermoelastic noise: No changes after 28th Oct.

Material	Silicon
Temperature, [K]	290 K
Specific heat [J·kg ⁻¹ ·K ⁻¹]	739
Thermal conductivity [W·m ⁻¹ ·K ⁻¹]	1.38
Thermal expansion coeff [K ⁻¹]	3.9e-7
Mirror Diameter	62 cm
Mirror thickness	30 cm

Check relevant parameters in the Materials.Substrate section of ETHF/ifo.yaml file on ET-NoiseBudget git 20

Coating Thermo-optic noise No changes after 28th Oct.

Material	Tantala?/Silica
Thermal expansion coeff [K ⁻¹]	3.6e-6/5.1e-7
dn/dT [K ⁻¹]	1.4e-5/8e-6
Thermal Diffusivity [m ² /s]	33/1.38

Check relevant parameters in the Materials.Coating section of ETHF/ifo.yaml file on ET-NoiseBudget git

Excess noise:

The excess noise consists of phase noise and damping noise.

We assume 5e-8 H2. (we expect H2 less than this pressure but some more molecules, like H20, HC(250) etc).

Damping noise is modelled based on Cavalleri's paper:

https://doi.org/10.1016/j.physleta.2010.06.041

Seismic noise:

The two parts are **not very accurate** in current noise budget. The seismic waves are not assumed and suspension TF are not as accurate as LF, but extracted automatically from GWINC.

Other lengths

One set of parameter choice (Reference)

ETHF (1064 nm, 200kg)	10km	15km	20km
Bandwidth	320Hz	310Hz	325Hz
SRM transmissivity	0.1	0.07	0.05
Beam size	12cm (g=0.94)	12cm (g=0.88)	12cm (g=0.78)
Mirror diameter	62cm	62cm	62cm
ETLF (1550 nm, 200kg)	10km	15km	20km
Bandwidth	150Hz	150Hz	150Hz
SRM transmissivity	0.2	0.135	0.105
Detuned frequency	25Hz	25Hz	25Hz
Detuned phase	0.6	0.4	0.3
Beam size	9cm (g=0.63)	9cm (g=0.17)	10cm (g=0.06), 40ppm clipping loss
Mirror diameter	45cm	45cm	45cm

Arm lengths (*l*): 10km | 15km | 20km (cryo vs. room T)

Room-temperature ET LF

Room-temperature ET

- Analysis done by J.Harms
- Parameters from Materials section of H ETHF/ifo.yaml transplanted to Materials section of S ETLF/ifo.yaml 10⁻²³

####