

What are the uses of a nullstream?

- 1) Estimation of instrument-noise PSD
- 2) Detector calibration
- 3) GW detection in the presence of non-Gaussian noise
- 4) CBC parameter estimation (?)
- 5) Stochastic searches

3

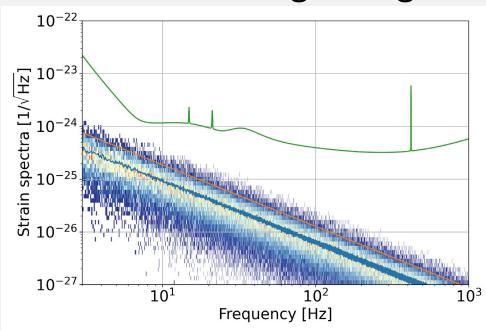
ET Nullstream vs Network Nullstream

- 1) ET nullstream (in contrast to a network nullstream)
 - a) also works in the simultaneous presence of many GW signals;
 - b) is not affected by changing source directions (like in the case of BNS observations due to Earth rotation).
- 2) Dependence of network nullstream on source-direction estimates poses a significant limitation (e.g., see glitch vetoing slide)

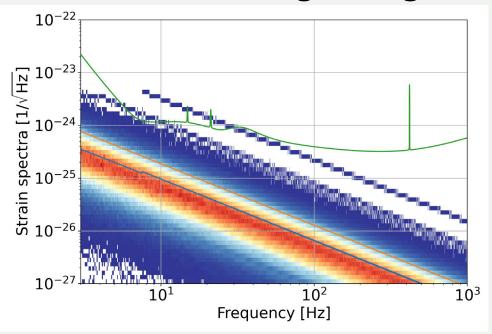
Estimation of PSD of Instrument Noise

Binary neutron stars (800,000 mergers per year)

Time segment	Number of BNS contributing energy above 2Hz
1 minute	100
10 minutes	300
1 hour	500
4 hours	800
24 hours	2500


Binary black holes (100,000 mergers per year)

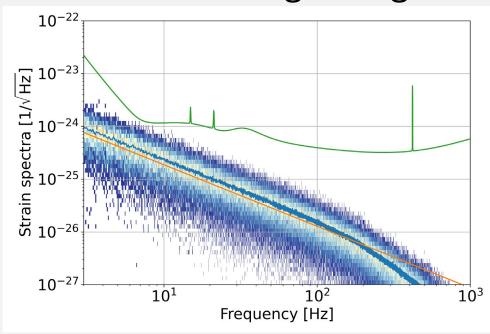
Time segment	Number of BBH contributing energy above 2Hz
1 minute	2
24 hours	300



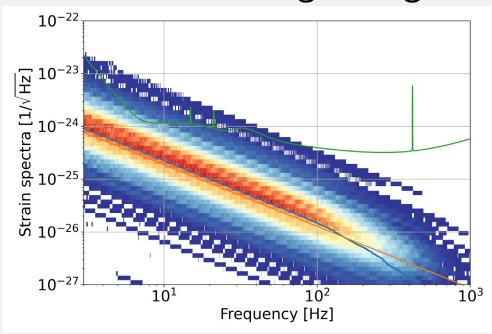
Astrophysical Foreground: BNS

24 hours PSD/FFT time 100 PSDs forming histogram

1 min PSD/FFT time 7200 PSDs forming histogram



It seems that there is no significant impact of BNS foreground on estimates of instrument-noise PSDs.



Astrophysical Foreground: BBH

24 hours PSD/FFT time 100 PSDs forming histogram

1 min PSD/FFT time 7200 PSDs forming histogram

BBH signals can be expected to significantly perturb estimates of instrument-noise PSDs.

7

ET Nullstream for PSD Estimates

Data from k=1,2,3 ET components as sum of GW signal and noise

$$d_k(t) = s_k(t) + n_k(t)$$

Definition of nullstream

$$N(t) = d_1(t) + d_2(t) + d_3(t) = n_1(t) + n_2(t) + n_3(t)$$

Instrument noise PSD obtained as cross-correlation with nullstream

$$\langle n_k | n_k \rangle = \langle d_k | N \rangle$$

Detector Calibration

Self-calibration of Networks of Gravitational Wave Detectors

Bernard F. Schutz

School of Physics and Astronomy, Cardiff University, Cardiff, UK, CF24 3AA and Max Planck Institute for Gravitational Physics (Albert Einstein Institute), 14476 Potsdam/Golm, Germany

B. S. Sathyaprakash

Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA, 16802, USA
Department of Physics, Pennsylvania State University, University Park, PA, 16802, USA
Department of Astronomy & Astrophysics, Pennsylvania State University, University Park, PA, 16802, USA and
School of Physics and Astronomy, Cardiff University, Cardiff, UK, CF24 3AA

Basic idea: construct matched filter to detect residuals of GW signals in the nullstream. The filter provides information about calibration errors.

Calibration errors

Required for network nullstreams

$$\tilde{N}^{123} = \tilde{N}_{\rm n}^{123} + \sum_{a} A^{(a)} c^{(a)}(f) [F_{+}^{(a)} \tilde{h}_{+}(f) + F_{\times}^{(a)} \tilde{h}_{\times}(f)] e^{2\pi i f \tau^{a}}$$

- Nullstream residuals are low SNR (since calibration errors are small). So, one needs to combine analyses of many CBC signals to obtain useful information about calibration errors.
- 2) Absolute calibration can in principle be achieved with one detector being accurately calibrated at one frequency, or with accurate source-distance estimates, e.g., from EM counterparts.

Optimal GW Searches Using the Nullstream

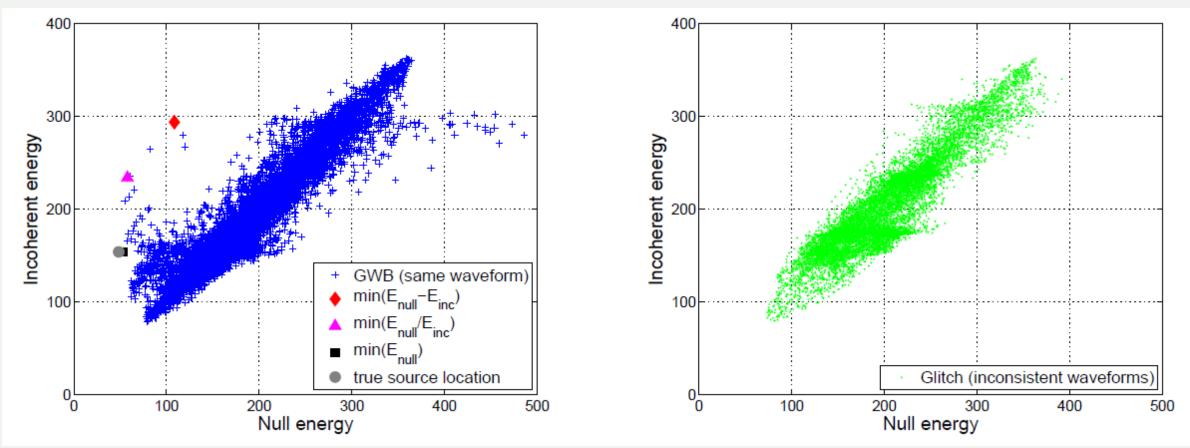
- 1) With nullstream, it is in principle sufficient to see the GW signal in only one detector (instead of requiring coincident detections).
- 2) Reject transients if they appear in the nullstream. ET superior to 3-detector network: since the nullstream does not depend on GW direction, weaker glitches can be vetoed.
- 3) In ET, efficiency of glitch veto limited by calibration errors (calibration errors can cause glitches not to be vetoed).

Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise

Shourov Chatterji, Albert Lazzarini, Leo Stein, and Patrick J. Sutton LIGO - California Institute of Technology, Pasadena, CA 91125

Antony Searle
Australian National University, Canberra, ACT 0200, Australia

Massimo Tinto


Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

(Dated: October 30, 2018)

Glitch Vetoing

Each point in these plots is a trial sky location to construct a network nullstream.

Analgous study for ET under way (Goncharov, Nitz).

Nullstream and CBC Parameter Estimation

Null-stream-based Bayesian Unmodeled Framework to Probe Generic Gravitational-wave Polarizations

Isaac C. F. Wong, ^{1, a} Peter T. H. Pang, ^{2, 3, b} Rico K. L. Lo, ^{4, c} Tjonnie G. F. Li, ^{1, 5, 6} and Chris Van Den Broeck^{2, 3}

¹Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

²Nikhef – National Institute for Subatomic Physics,

Science Park, 1098 XG Amsterdam, The Netherlands

³Institute for Gravitational and Subatomic Physics (GRASP),

Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands

⁴LIGO, California Institute of Technology, Pasadena, California 91125, USA

⁵Institute for Theoretical Physics, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium

⁶Department of Electrical Engineering (ESAT), KU Leuven,

Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

Explicitly shown in Wong et al, nullstream does not help for CBC PE if noise is Gaussian.

What if a relatively weak glitch perturbs a GW signal? Can you faithfully subtract it without nullstream? If not, how would such a glitch PE?

Stochastic GW Searches

Auto-correlation

$$\rho = \sqrt{T} \left[\int_0^\infty df \, \frac{\mathcal{R}^2(f) S_h^2(f)}{P_n^2(f)} \right]^{1/2}$$

Requires estimate of instrumentnoise PSD, which can be affected by calibration errors.

Cross-correlation

$$\rho = \sqrt{2T} \left[\int_{f_{\min}}^{f_{\max}} df \, \frac{\Gamma_{IJ}^2(f) S_h^2(f)}{P_{nI}(f) P_{nJ}(f)} \right]^{1/2}$$

GW cross-PSD typically significantly reduced across two different interferometers compared to the GW PSD.

Both stochastic searches are limited by instrument-noise correlations.

Sensitivity curves for searches for gravitational-wave backgrounds

Eric Thrane^{1, a} and Joseph D. Romano^{2, b}

¹LIGO Laboratory, California Institute of Technology, MS 100-36, Pasadena, California 91125, USA

²Department of Physics and Astronomy and Center for Gravitational-Wave Astronomy,

University of Texas at Brownsville, Texas 78520, USA

(Dated: November 26, 2013)