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Motivation for cryogenic ET-LF


Vacuum requirements for cryogenic payload operation


Cryogenic design and operating scenarios


Summary
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Outline
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MOTIVATION FOR CRYOGENIC ET-LF
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Cryogenic ET-LF
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Noise contributions in ET-LF sensitivity

Room-temperature ET-LF

Figures based on ET-Noise Budget Gitlab - PyGwinc Code (18.11.2021) - https://gitlab.et-gw.eu/et/isb/interferometer/ET-NoiseBudget

Contributed by Xhesika Koroveshi

ETLF RT:	1550 nm

ETHF:	 1064 nm

Suspension:	 RT

Marionette:	 2 K

Mirror:	 10 K

To be reviewed

https://gitlab.et-gw.eu/et/isb/interferometer/ET-NoiseBudget
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ET-LF noise limits: Cryogenic vs. room-temperature (RT) operation
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ET-LF suspension thermal noise

Figure based on ET-Noise Budget Gitlab - PyGwinc Code (18.11.2021) - https://gitlab.et-gw.eu/et/isb/interferometer/ET-NoiseBudget

ET-Noise Budget Gitlab - PyGwinc Code (18.11.2021)

Figure Payload: ET Design Report Update (2020)

RT payload reduces sensitivity by factor 5 over 
entire ET-LF frequency band!

Seismic noise limit below 3 Hz compared to the 
ET Design Report 

Contributed by Xhesika Koroveshi

To be reviewed

https://gitlab.et-gw.eu/et/isb/interferometer/ET-NoiseBudget
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VACUUM REQUIREMENTS FOR CRYOGENIC 
PAYLOAD OPERATION
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Detailed discussion of ET-LF vacuum requirements in reference below

Main conclusions in subsequent slides
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ET-LF vacuum requirements
Contributed by Roberto Cimino and Christian Day
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Cryosorption depends on

Surface temperature

Gas partial pressures


Evaluation requires consideration of

Thermal transpiration correction, 
i.e. 

Vacuum history

pRT ≠ pLT
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Residual gas adsorption on cold surfaces 
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For  and , the most common residual gas species in a UHV chamber (except H2 
and He) will be adsorbed, forming a molecular ice (“frost”) layer on the surface

T ≈ 10 K p < 10−10 mbar

Contributed by Roberto Cimino and Christian Day
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The right evaluation of gas pressure allows to give reliable estimates of 
ice layer thickness forming on the cold surface
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Residual gas adsorption on cold surfaces 

Langmuir (L) unit:




gas exposure of a surface (or dosage) 
1 L = 1 × 10−6 mbar ⋅ s

For sticking coefficient :

1 L ~ 1 monolayer (ML) cryosorbed

For H2O: 1 ML ~ 0.3 nm 

Sc = 1
In , it takes 10.000 s 
(~ 3h) to build up one ML

1 × 10−10 mbar

Contributed by Roberto Cimino and Christian Day
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From KAGRA experience, simulations indicate:

Reflectivity gets affected, already after 100 nm  
of H2O ice

ET maximum thermal budget   
is expected to be exceeded already after  

 of H2O ice !!! 

(0.1 − 1.0 W)

≈ 1 − 10 nm
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Cryogenic vacuum issues on GWD optics 

1 − 10 nm H2O → 3 − 30 L

If it takes  
to start observing detrimental effects!!!

pH2O ≈ 1 × 10−10 mbar → (104 × (3 − 30) s) = (9 − 90) h

Contributed by Roberto Cimino and Christian Day
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Considering 1 W maximum thermal budget 

Cooling limit with this margin already anticipated in cryogenic design studies


This reasoning applies to all gases (CO, CO2, 
N2, etc.) that have desorption temperatures  
higher than 10 K
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Limits for base operating vacuum in ET-LF towers 

10-10

0.1 0.5 1.0 5.0

Temperature  (K)

Sa
tu

ra
tio

n 
pr

es
su

re
  (

Pa
)

10 50 100 300

10-8

10-6

10-4

10-2

100

102

3He

4He

H2

N2

CO
Ar

Vapour-liquid
equilibria
(VLE)

O2

CO2

H2O

CH4

D2

T2

Ne

Vapour-solid
equilibria
(VSE)If it takes   

to form 


A full year of operation!

pH2O = 1 × 10−12 mbar → 11.000 h
12 nm

Contributed by Roberto Cimino and Christian Day
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How does cryoadsorption compare against 
desublimation? 
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Example from CO2 (water data to be investigated, 
but they follow a similar pattern):


The plot shows particle release when heating a 
cryobaffle with an amount of pre-condensed gas: 
Particles are going from solid to gas when the 
heating meets the saturation temperature, get re-
adsorbed if a sorbent is present, and are then re-
released from there only at significantly higher 
temperatures

In other words: 
If the sorbent is well chosen, adsorption works 
always at higher temperatures than for 
desublimation

Contributed by Christian Day
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How does cryotrapping compare against 
cryoadsorption ? 

The plot shows the achieved end pressure in a 
vacuum system (´ohne Argonzusatz´), and how 
this pressure further decreases if a surface is 
installed that has condensed Ar on it 


Very similar patterns may be expected  
for water 

Contributed by Christian Day
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There is very interesting R&D ongoing that studies the influence of surface 
adsorption at different surface functionalizations and correlate it with the 
parameters in the Cercignani-Lampis scattering law


With some of this bundle of measures, although they have not yet been 
applied for situations as in ET, the partial pressure requirements of ET-LF 
can probably be achieved, if an accompanying R&D programme is 
installed 
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Ongoing, triggered by molecular dynamics: 
Effects of surface functionalization Contributed by Christian Day
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Is it feasible?
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Limits for base operating vacuum in ET-LF towers 

pH2O = 1 × 10−12 mbar

Use of cryo-panels around the mirror (inner shield)

Careful cool-down strategy (mirror to be cooled last)

Efficient warm-up/cool-down (already in the design phase)

Use of porous materials on cryo-panels to enhance 
adsorption over condensation and increase pumping speed 
and efficiency around the mirror

Other mitigations schemes? 

Challenging, requiring R&D, BUT it is indeed FEASIBLE!

Contributed by Roberto Cimino and Christian Day
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CRYOGENIC DESIGN AND OPERATING SCENARIOS
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Cryogenic infrastructure concept

One He cooling plant in each vertex

Cooling power for cryotraps, thermal 
shields and cryogenic detectors at 
three different temperature levels

Surface compressors

Underground coldbox

Cryogenic transfer system to towers
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The need of cryogenics in ET
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Reference in TDS: 
https://apps.et-gw.eu/tds/?content=3&r=17648

https://apps.et-gw.eu/tds/?content=3&r=17648
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Overview of cryogenic load estimates (per tower)

18

The need of cryogenics in ET

Component Temperature level / K Cooling power / W

Arm pipe cryotraps 50...80 x . . . 104

Outer thermal shield 50...80 x . . . 103

Inner thermal shield 5 x . . . 102

Payload heat sink 2 x . . . 100

ET-LF and ET-HFET-LF and ET-HF

 
possibly needed

T ≤ 20 K

Reference in TDS: https://apps.et-gw.eu/tds/?content=3&r=17648

Determines 
cryogenic 
infrastructure 
design!

Small influence 
on overall cost

Yet, there is scientific interest on the feasibility of a cryogenic payload

https://apps.et-gw.eu/tds/?content=3&r=17648
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Payload geometry and materials
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Cool-down studies of a cryogenic payload
Contributed by Lennard Busch

Platform 
(PF)

Cage 
(CG)

Marionette 
(MAR)

Test Mass 
(TM)

Bulk mass
Dimensions ∅ 900x30 ∅ ∽1000 

h ≈ 1300
∅ ∽700 
h = 150

∅ 450 
s = 570

Material Stainless 316L Si

Suspensions
Dimensions N/A

4x 
∅ 3


L = 700

1x 
∅ 3


L = 780

4x 
∅ 2…4


L ≈ 1000

Material N/A Stainless 
316L Ti6Al4V Si

~2
 m
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Results of solid conduction only
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Cool-down studies of a cryogenic payload

Conclusions Platform 
(PF)

Cage 
(CG)

Marionette 
(MAR)

Test Mass 
(TM)

~2
 m
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TP

d = 4 mmFiber

d = 4 mmFiber

3 mm

2 mm

F

TTM A cooling interface implemented on 
the platform (PF) is completely 
ineffective

The cooling interface must be 
implemented on the marionette 
(MAR)

Depending on the suspension fiber 
diameter, the cool-down by pure 
solid conduction would take  
~1-3 months

Contributed by Lennard Busch
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Possibility to implement ultra-low-noise cooling on the marionette
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Cooling system interface – design option
~2

 m

PF

„Mechanical“ cooling interface at PF

2-way Ti suspension capillary

Possibility to distribute He-II
in marionette, optionally also
to payload suspensions

MAR

Design features 

Double-walled Ti capillary 
suspension for counter-flow cool-
down with super-critical He-I

He-II cooling by steady-state 
conduction in standard operation 
(no macroscopic flow)
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Solid conduction + thermal radiation
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Cool-down studies of a cryogenic payload

Applied emissivity values


Conclusions 

Material ε(T) / -
316L (PF, MAR, CG) ∽0.02…0.06

Ti6Al4V (MAR Susp.) 0.1

Si (TM & -Susp.) ∽0.12…0.75 [1]
[1] Constancio et al. 2020  
     Silicon emissivity as a function of temperature
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Cooling by thermal radiation only 
is ineffective

Reduction of conductive cool-
down time by thermal radiation by 
~factor 3

Sufficiently fast, i.e. no need for 
contact gas cooling

Contributed by Lennard Busch
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Possibility of even faster mirror cooling

Cool-down and warm-up: Controlled super- 
critical He-I flow through hollow suspensions  
at temperatures of 300 K ↔︎ 3 K


Steady-state operation: Hollow suspensions  
filled with superfluid He-II → ultra-low-noise  
cooling by steady-state heat conduction in  
the superfluid He-II (no macroscopic flow)

In this case, the suspension and mirror  
temperatures are close to 2 K
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Option with He-II in hollow suspensions
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Achievable cool-down and warm-up cycles with hollow suspensions
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Option with He-II in hollow suspensions
Contributed by Lennard Busch
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¬T « 25 K Conclusions 

Very short thermal cycles of a 
few hours may be achieved

Option for surface regeneration of 
cryosorbed gas layers on hour 
time scales
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SUMMARY
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1) The ET-LF sensitivity is strongly influenced by suspension thermal noise. 
Cryogenic operation is required to achieve the design sensitivity of ET.


2) The water partial pressure around a cryogenic payload must be on the level of 
 to limit frost formation on the surface. This level 

appears to be achievable with an appropriate R&D programme.

3) A cryogenic infrastructure is required to fulfil the vacuum requirements in ET-

LF and ET-HF! Those cryopumps (cryotraps and inner/outer shields) determine 
the dimensions, cost and installation schedule of the cryogenic infrastructure.


4) Ultra-low-noise cryogenic payload cooling is feasible, absorbing heat loads 
up to 1 W from the payload. The impact on the cryogenic infrastructure is small.

pH2O ≤ 10−11… ≤ 10−12 mbar
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Summary
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Thank you for your attention!


