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l For past runs of 2G detectors, the focus has been on the 
detection of GW signals

l Focus is already shifting towards observation and MM 
astronomy triggers
n In-depth parameter estimation of large numbers of events
n Early warning alerts for a large number of events
n High level of automation

l High sensitivity and low frequency cutoff are not your 
friends
n See talks from OSB!

Towards 3G GW computing
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September 22th 2021, ET kick-offSeptember 22th 2021, ET kick-off

From 2G sensitivity 
to 3G 

7

● Lower frequencies (10Hz -> 1-5Hz)
● Sensitivity ~ x10

Enhanced sensitivity

105 BNS detections per year 
105 BBH detections per year 

COMPACT OBJECT BINARY POPULATIONS 

BINARY NEUTRON-STAR MERGERS  

BINARY BLACK-HOLE MERGERS  

 Sampling astrophysical populations 
of binary system of compact objects 	

along the cosmic history of the Universe  

ET sky-localization capabilities 

 

•  100 detection per year with “well” sky-localization 
< 20 sq. degrees 

•  early warning of hours-minutes 

1	year	of	observation	marica.branchesi@gssi.it

l Lower frequencies 
(down to 1-5Hz)

l Much higher 
sensitivity 

l 105 BBH detections
per year

l 105 BNS detections 
per year

l o(100) detections per 
year with <20 deg2

l Early warning by 
minutes (hours)
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Some challenges

O4 sensitivity. The effect is less severe for early warning times
just before merger, but low frequency noise is a major barrier to
advancing alerts.

Figures 2 and 3 demonstrate that the GW alert system is capable
of providing GW alerts before merger, but they do not consider the
prospects for detection from an astrophysical source population.
We generate a population of simulated BNS signals, henceforth
referred to as injections, using the TaylorF2 (Sathyaprakash &
Dhurandhar 1991; Blanchet et al. 1995, 2005; Buonanno et al.
2009) waveform model. Both source-frame component masses are
drawn from a Gaussian distribution between 1.0Me<m1,
m2< 2.0Me with mean mass of 1.33Me and standard deviation
of 0.09Me, modeled after observations of galactic BNSs (Özel &
Freire 2016).40 The neutron stars in the population are
nonspinning, motivated by the low spins of BNSs expected
to merge within a Hubble time (Burgay et al. 2003; Zhu et al.
2018). The signals are distributed uniformly in comoving
volume up to a redshift of z= 0.2. We consider a network of

four GW detectors: LIGO-Hanford, LIGO-Livingston, Virgo,
and KAGRA at their projected O4 sensitivities.41 We simulate
the results of an early warning matched-filtering pipeline by
considering six different discrete frequency cutoffs: 29, 32, 38,
49, 56, and 1024 Hz to analyze signal recovery at (approxi-
mately) 58, 44, 28, 14, 10, and 0 s before merger, motivated by
Sachdev et al. (2020). We calculate the network S/N of each
injection at each frequency cutoff and consider the events that
pass an S/N cutoff of 12.0 as “detected.” We then calculate the
sky posteriors for each of the detected signals by using
BAYESTAR (Singer & Price 2016). We use the most recent
BNS local merger rate from Abbott et al. (2020b) of

-
+ - -320 Gpc yr240

410 3 1 to estimate the number of events detected
per year in the detector network. In Figure 4(a) we see that our
optimistic scenario predicts -

+5 4
7 GCN will be received 1 s

before merger per year, while our pessimistic scenario predicts
' 1( ) GCN will be received 1 s before merger per year
considering the higher end of the BNS rate. Figure 4(b) predicts
that ∼9 events will be detected per year, out of which ∼20%

Figure 1. The upper half of the figure illustrates the complete pipeline and interaction of the various (sub)systems, mentioned in Section 2, responsible for
disseminating early warning alerts. The waveform evolution with time is shown in the bottom half along with the dependence of the sky-localization area on the cutoff
time of the early warning templates and the accumulated S/N during the binary inspiral. The waveforms, time to merger, S/N, and localizations in this figure are
qualitative.

40 Note that if GW190425 is a BNS, then galactic measurements are not
representative of neutron star masses. 41 https://dcc.ligo.org/LIGO-T2000012/public

4

The Astrophysical Journal Letters, 910:L21 (7pp), 2021 April 1 Magee et al.

l Overlapping signals
l Long duration waveform for CBCs (and moving detector)
l FAR estimate in the presence of a strong foreground
l Environmental correlated noise
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l Raw interferometer data don’t grow much with increasing 
instrument sensitivity
n Current GW detectors are writing o(1PB) per year of raw data per detector
n Pre-processed data for user analysis is more than 1 order of magnitude smaller
n In ET we expect about few tens of PB of raw data per year (baseline 6-IFO design, 

more control channels,…)
n No big deal today, piece of cake by 2035

l What grows is the amount of useful scientific information 
embedded in the data
n And the computing power needed to wring it out
n It’s a task in itself to precisely estimate the computing power needs

Data and more data
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1/10th of an LHC experiment

l Current computing needs of the entire GW network roughly 
o(10%) of an LHC experiment

l In ET the event rate will be 103 -104 times the current one
n Analysis of the “golden” events (EM counterparts, high SNR or 

“special” events) would already be within reach using current 
technologies
•O(500) events per year = 12.5MHS06-y per year, the same order of 

magnitude of a LHC experiment in Run 4
•Target: 1/10th of an LHC experiment in Run 4

l But: to be done (mostly) in low-latency!
l Need to start early Mock Data Challenges to develop and validate 

everything
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Online
l Data acquisition and pre-processing
l Instrument control
l Environmental monitoring
l …

Offline
l Deep searches
l Offline parameter estimation
l (Template bank generation)
l …

Low-latency
l Candidate search
l Sky localization
l Parameter estimation
l Alert generation and distribution

Three computing domains

On-site 
infrastructure

(Mostly) plain old
HTC and HPC

Here’s the fun
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The mandatory slide with boxes and arrows

High-Performance 
Computing Centres

High-Throughput 
Computing Centres

The Data Lake

Local data 
Buffer

Custodial Storage Facilities

Low-latency 
computing facilities

ET Site

External Cloud Facilities
Alert Generation 

services

Public Data
Services 

Other Services 
(catalogues, workload 

management,…)
Caching Content-Delivery 
Network
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ARTICLES
https://doi.org/10.1038/s41550-021-01405-0

1Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, USA. 2University of Chicago, Chicago, IL, USA. 3University of Illinois at 
Urbana-Champaign, Urbana, IL, USA. ✉e-mail: elihu@anl.gov

Gravitational waves were added to the growing set of detect-
able cosmic messengers in the fall of 2015 when the advanced 
Laser Interferometer Gravitational-Wave Observatory 

(LIGO) detectors reported the observation of gravitational waves 
consistent with the collision of two massive, stellar-mass black 
holes1. Over the last five years, the advanced LIGO and advanced 
Virgo detectors have completed three observing runs, report-
ing over 50 gravitational wave sources2,3. As advanced LIGO and 
advanced Virgo continue to enhance their detection capabilities 
and other detectors join the international array of gravitational 
wave detectors, it is expected that gravitational wave sources will be 
observed at a rate of several per day4.

An ever-increasing catalogue of gravitational waves will enable 
systematic studies to advance our understanding of stellar evo-
lution, cosmology, alternative theories of gravity, the nature of 
supranuclear matter in neutron stars, and the formation and 
evolution of black holes and neutron stars, among other phe-
nomena5–11. Although these science goals are feasible in principle 
given the proven detection capabilities of astronomical observato-
ries, it is equally true that established algorithms for the observa-
tion of multi-messenger sources, such as template-matching and 
nearest-neighbour algorithms, are compute-intensive and poorly 
scalable12–14. Furthermore, available computational resources will 
remain oversubscribed, and planned enhancements will be out-
stripped rapidly with the advent of next-generation detectors 
within the next couple of years15. Thus, an urgent rethink is criti-
cal if we are to realize the multi-messenger astrophysics program 
in the big-data era16.

To contend with these challenges, a number of researchers have 
been exploring the application of deep learning and of computing 
accelerated by graphics processing units (GPUs). Co-authors of this 
article pioneered the use of deep learning and high-performance 
computing to accelerate the detection of gravitational waves17,18. The 
first generation of these algorithms targeted a shallow signal mani-
fold (the masses of the binary components) and required only tens 

of thousands of modelled waveforms for training, but these models 
served the purpose of demonstrating that an alternative method for 
gravitational wave detection is as sensitive as template matching and 
significantly faster, at a fraction of the computational cost.

Research and development in deep learning is moving at an 
incredible pace19–37 (see also ref. 38 for a review of machine-learning 
applications in gravitational wave astrophysics). Specific mile-
stones in the development of artificial intelligence (AI) tools for 
gravitational wave astrophysics include the construction of neural 
networks that describe the four-dimensional (4D) signal mani-
fold of established gravitational wave detection pipelines, that is, 
the masses of the binary components and the z component of the 
three-dimensional spin vector in (N
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). This requires the 
combination of distributed training algorithms and extreme-scale 
computing to train these AI models with millions of modelled 
waveforms in a reasonable amount of time30. Another milestone 
concerns the creation of AI models that enable gravitational wave 
searches over hour-long datasets, keeping the number of misclas-
sifications at a minimum39.

In this article, we introduce an AI ensemble, designed to cover 
the 4D signal manifold (N
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), to search for and find 
binary black hole mergers over the entire month of August 2017 
in advanced LIGO data40. Our findings indicate that this approach 
clearly identifies all black hole mergers contained in that data batch 
with no misclassifications. To conduct this analysis we used the 
Hardware-Accelerated Learning (HAL) cluster deployed and oper-
ated by the Innovative Systems Laboratory at the National Center 
for Supercomputing Applications. This cluster consists of 16 IBM 
SC922 POWER9 nodes, with four NVIDIA V100 GPUs per node41. 
The nodes are interconnected with an EDR InfiniBand network, 
and the storage system is made of two DataDirect Networks all-flash 
arrays with SpectrumScale file system, providing 250 TB of usable 
space. Job scheduling and resource allocation are managed by the 
SLURM (Simple Linux Utility for Resource Management) system. 
As we show below, we can process data from the entire month of 

Accelerated, scalable and reproducible AI-driven 
gravitational wave detection
E. A. Huerta! !1,2 ✉, Asad Khan! !3, Xiaobo Huang3, Minyang Tian3, Maksim Levental2, Ryan Chard1, 
Wei Wei3, Maeve Heflin3, Daniel S. Katz3, Volodymyr Kindratenko3, Dawei Mu3, Ben Blaiszik1,2 and 
Ian Foster1,2

The development of reusable artificial intelligence (AI) models for wider use and rigorous validation by the community promises 
to unlock new opportunities in multi-messenger astrophysics. Here we develop a workflow that connects the Data and Learning 
Hub for Science, a repository for publishing AI models, with the Hardware-Accelerated Learning (HAL) cluster, using funcX 
as a universal distributed computing service. Using this workflow, an ensemble of four openly available AI models can be run 
on HAL to process an entire month’s worth (August 2017) of advanced Laser Interferometer Gravitational-Wave Observatory 
data in just seven minutes, identifying all four binary black hole mergers previously identified in this dataset and reporting no 
misclassifications. This approach combines advances in AI, distributed computing and scientific data infrastructure to open 
new pathways to conduct reproducible, accelerated, data-driven discovery.

NATURE ASTRONOMY | www.nature.com/natureastronomy

The mandatory ML slide

ML is not yet a mainstream “tool of 
the trade”, but a huge lot of R&D is 
already ongoing
l Efficiency & speed

n Signal Classification
n Parameter estimation
n Noise glitch hunting
n (Template bank generation)

l Technology exploitation
n Use advanced hardware (GPU, TPU...)
n FPGAs / custom hardware 

l Automatization
n Automatize standard procedure for Data Quality
n Automated de-noising with synthetic noise from GANs?
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l First and foremost, other 3G facilities
n CE (and LISA!)
n Will there be an equivalent of the IGWN?

l Several EM and astroparticle initiatives coming of age in the same 
time frame 
n CTA, SKA, KM3Net, Vera Rubin Observatory, Hyperkamiokande…
n Will there be a MM-specific (virtual) shared infrastructure like the WLCG?
n How will the 2030’s heir to today’s NASA GCN work?
n The architecture of the next LL alert distribution system is being defined now!
n We need to be involved since the beginning

l The EU is building the European Opens Science Cloud
n Scientific Computing in the Digital Continuum
n How concrete will it be in 2035?

The ecosystem
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ET Proto-collaboration

Steering
Committee

ISB
Instrument Sci.Board

OSB
Observation Sci.Board

EIB
E-Infrastructure Board

Suspensions

Optics

Interferometer

Vacuum and 
Cryogenics

Active Noise 
Mitigation

Civil 
Infrastructures

Fundamental 
Physics

Cosmology

Population Studies

Multimessenger Obs.

Synergies with 
GWDs

Nuclear Physics

Transient GW 
Sources

Waveforms

Scientific potentials 

Data Analysis 
Platform

Site Studies

Environmental 
studies

Geophysical studies

Data management 
std.

Analysis tools and 
data comparison

Detector 
Optimisation

Community 
relations

Costs and socio-
economic impact

Legal

On-site 
Infrastructure

Distributed 
infrastructure

Software & 
frameworks

Divisions

SPB
Site Preparation Board

http://www.et-gw.eu/index.php/et-steering-committee
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«…to design, create and operate an evolving, efficient and 
functional e-infrastructure environment at a reasonable 
cost for the collaboration. Initially the focus will be the 
development of a Computing Model for the ET».

l Prepare a plan of the studies and activities that need to be 
undertaken for the development of the ET computing.

l Propose a computing model and its updates to the collaboration.
n Current chairs: S. B. (INFN), Achim Stahl (Uni Aachen), Patrice Verdier (IN2P3)
n https://apps.et-gw.eu/tds/ql/?c=16044

EIB mandate
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Data transfer and storage: safely and efficiently transfer all data to custodial storage and processing centres, 
including low-latency transfers;

Software packaging and distribution: manage software lifecycle, and make packages available ubiquitously;

Computing power: provide and manage computing resources (HTC and HPC) for the processing of data, in all 
computing domains;

Data distribution: make data available to worker nodes in computing centres anywhere, and possibly also to single 
workstations, including support to public releases of data;

High-availability service management: provide a platform for running the collaboration’s services (e.g. alert 
generation services, event databases,...)

Job lifecycle management: provide a uniform job submission and runtime environment to research groups;

Data cataloguing and bookkeeping: organise all data and metadata and provide querying and discovering 
capabilities;

High-level workload management: keep a database of all jobs and allow the enforcement of priorities and scheduling 
strategies; provide support for organized large-scale data processing campaigns;

Monitoring and accounting: monitor local and distributed computing, checking performance and looking for issues, 
and provide reliable accounting both at the user/job and site level;

Authentication, Authorisation and Identity management: provide consistent AAI across all domains and activities.

Collaboration services: provide tools for efficient collaboration management, coordination, and outreach (e.g. 
document repositories, collaborative tools, administrative databases, communications,...)

Shopping list
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l The overall architecture of the e-Infrastructure, either as a single integrated 
system or as a few separate systems (e.g. instrument control and DAQ, low-latency, 
and offline)

l A documented way of evaluating the required computing power and storage space 
from the evolving scientific program of the collaboration

l Estimates of the involved costs and growth timelines

l A description of the data flows, with estimates for the needed network 
performances

l A description of the User Experience and workflows for relevant activities

l A description of the tools chosen or to be developed to provide all the required 
functionalities (foundation libraries, frameworks, middleware,...)

l Separate “Work Breakdown Structure” and “Implementation Plan” documents

The Computing Model
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Chairs
•Achim Streit - Aachen University (Germany)

•Sergi Girona – Barcelona Supercomputing Center (Spain)

Objectives
•Definition of the computing and data model of the Einstein 

Telescope, including the definition of the workflow, estimate of the 
resources.

•Data Access – technical guidelines and principles for implementing the 
data access policies

INFRADEV WP8: Computing and data model
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INFRADEV WP8: Computing and data model

Tasks
T8.1 T0 data center
Conceptual design of the center in close collaboration with the instrument science board. 
Definition of the services provided by the center, delimitation against services realized with 
distributed computing. 
T8.2 Computing and Data Model
Development of the computing and data model in close cooperation with the instrument science 
board and observational science board of ET. Definition of the workflow from the instrument to 
the publication.
T8.3 Resources
Estimate of the computing resources (computing power and data storage), the personnel, and 
the operational cost required for all aspects of ET computing. The potential for mitigation must 
be addressed.
T8.4 Data Access Implementation
Guidelines for the data policy compliance, relevant to the data storage, access, process and 
distribution, on all relevant time scales, respecting the EU policies on open data.
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INFRADEV WP8: Computing and data model

PRELIMINARY Milestones + deliverables
Workshops WPs Deliverable Due date

M8.1 Workflows Requirements collection 
and constraints: computing and data WP8 M12

D8.1
Computing and Data 
Requirements

M18

M8.2
Computing Infrastructures 
availability for ET workflows, 
characteristics 

WP8, 
WP9

M24

M8.3 On site infrastructure, computing and 
data model 

WP8, 
WP6

M36

M8.4 Low latency and offline workflows and 
computing model

WP8, 
WP6

M40

D8.2 Computing and Data Model M42

M8.5 Data management, access, policy and 
implementation

WP8, 
WP2, 
WP6

M46

D8.3
Data Access Implementation
Guidelines

M48
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INFRADEV WP8: Computing and data model

Under discussion
l Budget (~1 FTE)

n Role: Coordination, system engineer knowledge
n Risk: No easy to find the right person
n Mitigation: Split the role among more persons, complement with in-kind contribution.

l Participants roles
n Workshops participation and contribution. The workshops output will be the input for 

the WP deliverables.
n Collect possibility to give in-kind contributions (personnel) 
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l We need special professional profiles
n Something between physical science and computer engineering
n Not exactly “pipeline developers”, not exactly “system architects”

l Such personpower is difficult to find
n Skilled personpower for computing activities is scarce
n Hard to train and keep, hard to hire

l This is not a problem for the GW community only
n And neither limited to the EU 

l For example, HSF had some recommendations for that
n Training, career incentives,…
n We should plan also for that

A word of warning


