

Systèmes de Référence Temps-Espace

- Time and Frequency transfer
- over telecommunication Fiber networks :
- a new research infrastructure with applications for geoscience and astro particle physics ?

P.-E. Pottie

- Introduction to fiber links technology
- Some user-case examples
- REFIMEVE+ : an optical metrology network
- Towards EU research infrastructure
- Proposal in APOGEIA-II

Systèmes de Référence Temps-Espace

Means to compare/disseminate clocks

Systèmes de Référence Temps-Espace

T/F transfer over fiber network : a new RI Partnering meeting - ZOOM, January 20, 2021

Delay under control...

Time transfer = mastering delays Instrumental delays Propagation delays Other... (Sagnac effect)

Propagation delay :

Remote measure +

Propagation model Celerity of the waves Spatial coordinates

Reciprocity Local measure +

Transportable clock Cs: $10^{-13}(1s)$, $4x10^{-16}(1d)$ Sr : 10⁻¹⁵(1s), 10⁻¹⁷(3h)

Principles

Fiber links : seminal works (Primas et al., 1988)

SYSTEM*

Lori E. Primas George F. Lutes Richard L. Sydnor Jet Propulsion Laboratory

Classes of fiber links

- Two-way : Stabilized / Post-processed
 - Post-processed techniques used for comparison purposes
- One way: Unstabilized (affects stability and accuracy)

- Bi-directional or uni-directional (affects the correlations)
- Analog or digital (affect the scalability)

Principles

Fiber links : seminal works (Primas et al., 1988)

STABILIZED FIBER OPTIC FREQUENCY DISTRIBUTION SYSTEM*

> Lori E. Primas George F. Lutes Richard L. Sydnor

Active noise compensation after one round-trip **Strong hypothesis : noise forth and back are the** same 2 ends at the same place (for link stability measurements) **RF, hF or optical signals** FIGURE 1. PHASE CONJUGATION AT INPUT TO OPTICAL FIBER FIGURE 3. FIBER OPTIC FREQUENCY DISTRIBUTION SYSTEM

L. E. Primas et al., Proc. 20th PTTI, Vienna, VA, 29 Nov - 1 Dec 1988(1988)

Classes of fiber links

- Two-way : Stabilized / Post-processed
 - Post-processed techniques used for comparison purposes
- One way: Unstabilized (affects stability and accuracy)

- Bi-directional or uni-directional (affects the correlations)
- Analog or digital (affect the scalability)

Performances

60 years of improvements...

Applications area

Optical methods

Relativistic Geodesy

RF+time methods

Radio-astronomy VLBI

Space Geodesy

Systèmes de Référence Temps-Espace

Courtesy of Davide Calonico (on behalf BIPM)

Scientific cases

PAPER · OPEN ACCESS

First international comparison of fountain primary frequency standards via a long distance optical fiber link

To cite this article: J Guéna et al 2017 Metrologia 54 348

White Rabbit 'ecosystem'

Particle detectors

ARTICLE

Received 1 Mar 2016 | Accepted 1 Jul 2016 | Published 9 Aug 2016

A clock network for geodesy and fundamental science

C. Lisdat¹, G. Grosche¹, N. Quintin², C. Shi³, S.M.F. Raupach¹, C. Grebing¹, D. Nicolodi³, F. Stefani^{2,3}, A. Al-Masoudi¹, S. Dörscher¹, S. Häfner¹, J.-L. Robyr³, N. Chiodo², S. Bilicki³, E. Bookjans³, A. Koczwara¹, S. Koke¹, A. Kuhl¹, F. Wiotte², F. Meynadier³, E. Camisard⁴, M. Abgrall³, M. Lours³, T. Legero¹, H. Schnatz¹, U. Sterr¹, H. Denker⁵, C. Chardonnet², Y. Le Coq³, G. Santarelli⁶, A. Amy-Klein², R. Le Targat³, J. Lodewyck³, O. Lopez² & P.-E. Pottie³

bservatoire SYRTE

Determination of a high spatial resolution geopotential model using atomic clock comparisons

G. Lion^{*1,2}, I. Panet², P. Wolf¹, C. Guerlin^{1,3}, S. Bize¹ and P. Delva¹

¹LNE-SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 61 avenue de l'Observatoire, F-75014 Paris, France ²LASTIG LAREG, IGN, ENSG, Univ Paris Diderot, Sorbonne Paris Cité, 35 rue Hélène Brion, 75013 Paris, France

³Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, UPMC-Sorbonne Universités, Collège de France, 24 rue Lhomond, 75005 Paris, France

see also :

T. E. Mehlstäubler et al., Atomic clocks for geodesy. Rep. Progress in Physics **81**, 064401 (2018).

T/F transfer over fiber network : a new RI Partnering meeting - ZOOM, January 20, 2021

OPEN

DOI: 10.1038/ncomms12443

Seismic detection

- Detection os seisms with fiber links
 - Acoustic noise seen in propagation delay fluctuation and residuals after compensation
 - Detection in a fiber network not yet done
- Determination of propagation velocities
- Localisation ? Early warning ?
- Optimal parameters :
 - Fiber length
 - Sampling rate
 - • •
- Work under progresses at SYRTE and LPL...

see seminal work at INRIM and NPL: G.Marra et al. Science eaat4458 (2018) doi:10.1126/science.aat4458.

Technical solutions (non exhaustive)

Systèmes de Référence Temps-Espace

REFIMEVE: REFIMEVE+ and T-REFIMEVE

Listed as National Research Infrastructure in 2021

Systèmes de Référence Temps-Espace

~35 partners

REFIMEVE: REFIMEVE+ and T-REFIMEVE

Listed as National Research Infrastructure in 2021

Systèmes de Référence Temps-Espace

~35 partners

REFIMEVE+ : Performances over I month

Systèmes de Référence Temps-Espace

Partnering meeting - ZOOM, January 20, 2021

REFIMEVE+ : uptime

Operation of a link / 19 months

link Paris-Strasbourg-Paris

Systèmes de Référence Temps-Espace

T/F transfer over fiber network : a new RI Partnering meeting - ZOOM, January 20, 2021

19 months = 576 days = 49'766'400s

- Total Uptime = 54.5%
- Selection criterium Frequency < 10 Hz = $5x10^{-14}$
- <u>All the system involved</u> (Ultra-stable Laser + Comb + Link)

E.Cantin et al. New J. Phys. 23, 053027 (2021).

REFIMEVE+ : industrial partnership

Industrial grade fiber links

Link summary

F. Camargo et al., **57** (25) ,2018, <u>doi.org/10.1364/AO.57.007203</u>

Systèmes de Référence Temps-Espace

CLONETS : towards EU-Research Infrastructures

Systèmes de Référence Temps-Espace

T/F transfer over fiber network : a new RI Partnering meeting - ZOOM, January 20, 2021

Fiber links range (km)

CLONETS : a paper study

16 partners from 3 areas

- Work with Network for Education and Research Industry to make the technology available
- Ways to access the network
- Compatibility with TelCo

Surveys and reviews

- 2 surveys, 1 market study : research infrastructures, industry, society...
- Technology reviews
 - T/F service parallel to data traffic
 - Guide for best practice
 - Emerging technologies

Current work

- **Overall vision**
- Strategic roadmaps
- Technology roadmaps

T/F transfer over fiber network : a new RI Partnering meeting - ZOOM, January 20, 2021

https://www.clonets.eu/

Proposal in APOGEIA

- A1: Noise compensation <-> Noise understanding
 - Link to WP Fiber (DAS): How DAS and T/F can help each other
 - Specific case of undersea fibers: Mediterranean see, Atlantic ocean
- A2: Synchronisation and syntonisation to observatory for multi-messenger astronomy
- A3: Array of quantum networks (clocks, absolute) gravimeters): spatial and temporal variation of gravity
 - Proof of principle at SYRTE: Common reference for two distant AQG
 - Implementation at Laboratoire Souterrain de Madone (AQG, +clocks +.. ?)
 - Benefit of Mobile Platform (REFIMEVE), transportable clocks, transportable absolute gravimeter.
 - Link to WP underground, Gravi and Clocks

Outlook

- Fiber links : a new technology for T/F transfer Beyond GNSS solutions : le-15@ls to le-19@lday
- Complement GNSS solutions
- REFIMEVE+ : fully optical metrological network https://www.refimeve.fr
 - Optical reference signal disseminated in France
 - Partnership with RENATER (NREN) and industrial consortium
 - Deployment is still under way
- Towards EU research infrastructure building a clock service

https://www.clonets-ds.eu/

T/F transfer over fiber network : a new RI Partnering meeting - ZOOM, January 20, 2021

Systèmes de Référence Temps-Espace

Thank you for your attention

Hyper-frequency:

O. Lopez, et al. Applied Physics B **98**, 723–727 (2010). F. Yin, F. et al. Optics Express 22, 878 (2014). X. Chen, X. et al. Optics Letters 40, 371 (2015). S. Schediwy, Optics Letters 42, 1648 (2017).

Radio-frequency:

C. Daussy et al. Physical Review Letters **94**, (2005).

J.-F. Cliche et al. IEEE Control Systems Magazine 26, 19–26 (2006).

M. Fujieda et al., IEEE T-IM **58**, 1223–1228 (2009).

R.Wilcox, Optics Letters **34**, 3050 (2009).

Y.He, et al. Optics Express **21**, 18754 (2013).

P. Krehlik, IEEE T-UFFC 63, 993–1004 (2016).

D. Gozzard, IEEE Photonics Technology Letters 30, 258–261 (2018).

Systèmes de Référence Temps-Espace

White-Rabbit:

Everything is on the wikipage...

G. Daniluk, (CERN).

Nucl. Instr. & Meth. in Phys. Res. 725, 187–190 (2013). E.F. Dierikx, et al. IEEE T-UFFC 63, 945–952 (2016). N. Kaur, https://hal.archives-ouvertes.fr/tel-01909292

Optical frequency:

F. Guillou-Camargo et al. Appl. Opt., AO **57**, 7203–7210 (2018).

- J. Guéna et al. Metrologia **54**, 348 (2017).
- C. Lisdat et al. Nature Communications 7, 12443 (2016).
- N. Chiodo et al, OE **23**, 33927–33937 (2015).
- S. Raupach et al., Physical Review A **92**, (2015).
- O. Lopez et al., Comptes Rendus Physique **16**, 531–539 (2015).

