

Searches for Mass-Asymmetric Compact Binary Coalescence Events using Convolutional Neural Networks

Marc Andrés-Carcasona¹, A. Menéndez-Vázquez¹, M. Martínez^{1,2}, LL. M. Mir¹ ¹ Institut de Física d'Altes Energies (IFAE), Barcelona Institute of Science and Technology, E-08193 Barcelona, Spain ² Catalan Institution for Research and Advanced Studies (ICREA), E-08010 Barcelona, Spain

G2NET-WG1 meeting - 08/04/2022

Mail to <u>mandres@ifae.es</u>

OUTLINE

- Current methods
- Potential improvement of machine learning

DATA PREPARATION

• Parameter space covered • Generation of training sets

Marc Andrés Carcasona

CNN ARCHITECTURE

• Description of the layers that • Training hyper-parameters

• Comparison with GWTC-3 catalog

TRAINING RESULTS

- Metrics of the training procedure
- Determination of the threshold
- Combination of outputs

INTRODUCTION

We are interested in Compact Binary Coalescences with high mass ratio.

The traditional searching method is based on a matched filtering technique applied over a complete template bank. This method is robust but slow.

Alternatively, we can use a spectrogram to visualize the data and this twodimensional image is perfect to be used alongside image processing Machine Learning (ML) techniques.

Some benefits of using ML are:

- Extensive literature from other fields
- Fast inference speeds
- Easy implementation due to preexisting libraries

DATA PREPARATION - Images generation

Number of training images:

~ 112.000

Divided equally into signal and real noise (extracted from periods of O3a which do not contain an event)

CNN ARCHITECTURE

The actual architecture used is that of a ResNet50. For a detailed explanation of the layers see Phys. Rev. D 103, 062004 (2021)

0.001
32
12
Adam
Binary-cross entropy

TRAINING RESULTS

In total, we have trained 7 CNNs (covering all possible ITF combinations). The metrics that we follow are:

- o Loss
- Accuracy
- Validation accuracy (decision metric)

To establish a threshold to define a trigger we require the discriminant to have associated a False Alarm Rate of $FAR \leq 1 yrs^{-1}$

Marc Andrés Carcasona

To compute the FAR we have performed a time-shifted analysis

 $FAR(\eta) = \frac{N(\eta)}{T}$

Discriminant

MinoTauro, a GPU cluster held at BSC, was used to analyze the data

higher than η

Total time analyzed

To enhance the detection of events we have explored the combination of the outputs of the CNNs trained with the information coming from different ITFs.

Method 1 from Physics of the Dark Universe 35 (2022) 100932 SNR=40 $Loss = \sum_{SNR} \sigma_{SNR}^2 \longrightarrow \sigma_{SNR}^2 = \langle D_{SNR} - \langle D_{SNR} \rangle^2 \rangle$ SNR=5After running it for our case: $D = \beta_1 D_{L1H1V1} + \beta_2 D_{L1H1} + \beta_3 D_{L1V1} + (1 - \beta_1 - \beta_2 - \beta_3) D_{H1V1}$ $\beta_1 = 0.03$ $\beta_2 = 0.30$ $\beta_3 = 0.33$ Minimization of the binary cross-entropy $Loss = -\frac{1}{N} \sum_{i=1}^{N} y_i \log(D_i) + (1 - y_i) \log(1 - D_i)$ After running it for our case: $D = \beta_1 D_{L1H1V1} + \beta_2 D_{L1H1} + \beta_3 D_{L1V1} + (1 - \beta_1 - \beta_2 - \beta_3) D_{H1V1}$ $\beta_1 = 0.45$ $\beta_2 = 0.50$ $\beta_3 = 0.0$

O3 Scan

Effective volume:

$$\langle VT \rangle = \int dz \frac{1}{1+z} \frac{dV_c}{dz} e(z)$$

Efficiency (fraction of events

that can be recovered) 90% CL upper limit of the merger rate according to the loudest event statistic:

$$\mathscr{R}_{90} = \frac{2.3}{\langle VT \rangle}$$

(See, for example, <u>arXiv:2109.12197</u>)

As expected, we are less sensitive but we cover a broader range.

The next step is to recast this as limits to different theoretical models of Primordial Black Holes

CONCLUSIONS

Marc Andrés Carcasona

This approach is less sensitive than traditional matched filtering but faster (an entire scan takes a day to run instead of months)

