

Application of Gaussian Mixture Modelling to short all-sky burst search

Leigh Smith

Collaborators: Gayathri V., Archana Pai, Ik Siong Heng, Dixeena Lopez, Chris Messenger

G2Net WG1 Meeting Valenica

April 2022

All-sky Short Burst Search

- Burst events: GW transients with generic, un-modelled morphologies
- All-sky short: short duration transients
 - Millisecond to few second, frequency band of 24-4096 Hz
- Searches for generic waveform morphologies & astrophysically motivated waveforms: supernovae and pulsar glitches
- Cannot be detected through usual modelled search algorithms such as matched filtering -> Coherent WaveBurst

Coherent WaveBurst (cWB)

- Does not require a priori knowledge on morphology, time of arrival, sky-direction, polarisation
- Uses excess coherent energy in time-frequency domain
- Combines data from multiple detectors to create a coherent analysis
- Background is estimated by applying an unphysical time shift (greater than light travel time)
- Noise glitches can be difficult to distinguish from short duration signals
 - Short duration, often have low Quality factor Q

wbb coherent WaveBurs an open source software for gravitational-wave data analysis

See: https://gwburst.gitlab.io/

example of waveform in time-frequency plot

Coherent WaveBurst (cWB)

- For standard cWB all-sky search:
 - Done in 2 parts: LF (24-1024Hz) & HF (1024-4096Hz)
 - LF has 3 bins in O3 search:
 - LF1 signal energy confined mostly to one oscillation (& Q ≤ 3)
 - LF2 Q \leq 3
 - LF3 higher Q

Low Q = wide frequency bandwidth High Q = narrow frequency bandwidth

oherent WaveBurst

Coherent WaveBurst (cWB)

	Attribute	Definition				
	f _o	Central frequency				
	au	Duration				
	η_{c}	Coherent network SNR				
network	c _{c0}	$c_{c0} = E_c / (E_c + E_n)$				
coefficients	C _{c2}	$c_{c2} = (E_c \times c_{c0})/(E_c + E_n)$				
	N _{ED}	Energy disbalance between detectors				
	E _c	Coherent energy				
	N _{norm}	Ratio between reconstructed energy & total energy				
	χ^2	Residual noise energy measure				
	Q _{veto0}	Energy distribution of event over different time segments				
	Q _{veto1}	Quality factor				
	L _{veto0}	Central frequency of reconstructed signal (identifies narrow band glitches)				
	L _{veto1}	Root mean square frequency of reconstructed signal				
	L _{veto2}	Energy ratio between pixel energy and total energy of event				

Application of Gaussian Mixture Modelling to short all-sky burst search

Coherent WaveBurst (cWB)

coherent WaveBurst

an open source software for gravitational-wave data analysis

WB

- •Supervised machine learning method
- Probabilistic model which uses uni-modal Gaussian distributions to represent a multi-modal data set
- •Allows for sub-populations to be identified in data and modelled as a superposition of Gaussians Simulated Data Best GMM

• Data x has d attributes. Modelled by GMM as a superposition of K Gaussians:

$$p(\mathbf{x}) = \sum_{j=1}^{K} w_j \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$

• Gaussian distribution $\mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$ has d-dimensional mean $\boldsymbol{\mu}_j$, d x d covariance matrix $\boldsymbol{\Sigma}_j$, a weight on each Gaussian of w_j

• Individual log-likelihood:
$$ln(\mathcal{L}) = \sum_{i=1}^{n} ln(p(\mathbf{x}|\Theta)) = \sum_{i=1}^{n} ln\left\{\sum_{j=1}^{K} w_j \mathcal{N}(\mathbf{x}_i|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)\right\}$$

 $\Theta := w_j, \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j, \{j = 1, ..., K\}$

Gayathri V. et al. 2020

- Model parameters estimated through Expectation maximisation (EM) technique
 - Cannot predict optimal no. Gaussians
- Account for overfitting of data through Bayesian Information Criterion (BIC):
 - For *n* no. of attributes and given no. of Gaussians *K*, and max likelihood $\hat{\mathcal{L}}$:

$$BIC = Kln(n) - 2ln(\hat{\mathcal{L}})$$

• Lowest BIC score gives optimal number of Gaussian components

- Maximum log-likelihood: $W = ln(\hat{\mathcal{L}})|_{\hat{K}}$
- Noise and signals are distinguished as 2 separate models
- Detection statistic for each trigger:

$$T = W_s - W_n$$

• Clear separation between the signal and background distributions

Application to cWB

- Applied at post-production stage of cWB
- No need to separate into bins
 - removes need to use trial factor
- Use of 11 cWB defined attributes
- Re-parametrisation of attributes gives optimal results
 - New parameter introduced: $L_{ratio} = L_{veto1}/L_{veto0}$

Original	Re-parametrized			
attribute set	attribute set			
η_c	$log_{10}(\eta_c)$			
c_{c0}	$logit(c_{c0})$			
c_{c2}	$logit(c_{c2})$			
N_{ED}	$log_{10}(N_{ED}+10^3)$			
E_c	$log_{10}(E_c)$			
$N_{ m norm}$	$N_{ m norm}$			
χ^2	χ^2			
$Q_{ m veto0}$	$log_{10}(Q_{\rm veto0}+1)$			
$Q_{\rm veto1}$	$log_{10}(Q_{\rm veto1})$			
$L_{ m ratio}$	$logit(L_{ratio})$			
$L_{\rm veto2}$	$logit(L_{veto2} \times 0.99)$			

GMM on O3a all sky data

- Consider triggers with η_c (SNR) > 5.5 & c_c (cross-correlation) > 0.5 in HL network
- Simulated signals used for training
 - Consists of Sine-Gaussian (SQ), Gaussian Pulse (GP) and White Noise Burst (WNB) events

Sine	-Gaussian B	Surst (SGW)						
No.	f_0 (Hz)	Q	-	White-Noise Burst (WNB)				
1	70	3	-		$f_{\rm low}~({\rm Hz})$	Δf (Hz)	τ (s)	
2	70	9	1727	14	150	100	0.1	
3	70	100	-21	15	300	100	0.1	
4	100	0		16	750	100	0.1	
4	100	9		Gaussian Pulse (GP)				
5	153	9	27		-	-	τ (s)	
6	235	3	-	17	-	-	0.1	
7	235	9	-	18	-	-	1	
8	235	100	-	19	-	-	2.5	
9	361	9	-	20	-	-	4	
10	554	9	-					
11	849	3	-					
12	849	9	-					
13	849	100	-					

Paper: D. Lopez et al. 2021

GMM on O3a all sky data

- Data randomly split into 3 sets
 - 10% for validation
 - 70% for training
 - 20% for testing
- Equal distribution of injected waveforms
- Approx. 1000 years of background data
 - Only tested on 200 years due to other data being used for training

Results – injected waveforms

- Efficiency calculated based on T
- Best improvement on detection efficiency for GP
 - often fall into bin containing a population of very short and very loud blip-type glitches
- GP has improvement of ~ x125 in sensitive volume

Solid - GMM + cWB

Results – injected waveforms

- Improves detection efficiency for a given FAR over all waveforms
- Typical improvement of ~ x1.33 in sensitive volume for SG & WNB

Results – injected waveforms

- Improves detection efficiency for a given FAR over all waveforms
- Typical improvement of ~ x1.33 in sensitive volume for SG & WNB

Results – CCSN injections

- CCSN waveforms were not included in training set
 - Tests robustness over variety of morphologies
- Largest improvement seen for m39 type SN
- Comparative efficiency for other models, however still has improvement

Results

- Recovers all CBC events identified by targeted cWB search
- Higher significance for some events than found with standard cWB
- Less sensitive to low-mass BBH systems
 - Potentially due to injected signals used

D. Lopez et al. 2021

Summary

- cWB plus GMM enhances the detection performance for generic morphologies
 - improved detection probability at given FAR across simulated waveforms
 - Typical improvement of 1.33 in sensitive volume, 125 for GP
- Assists with classification of blip glitches
- Improvement in CCSNe injections demonstrates robustness
- Work currently being done to make available for O4 run

Papers: method: arxiv:2008.01262, application to O3a: arxiv:2112.06608

For O3a simulations:

- SG & GP injected over grid of max strain values given by $h_{rss} = (\sqrt{3})^N 5 \times 10^{-23} \text{ Hz}^{-1/2}$
- WNB injected uniform in square of signal distance