
Simulating transient  
noise bursts in LIGO
WITH GENERATIVE ADVERSARIAL 
NETWORKS

Melissa Lopez1,2, Vincent Boudart3, Kerwin Buijsman2, Amit Reza1,2, Sarah Caudill1,2

1. Institute for Gravitationaland Subatomic Physics (GRASP), Utrecht University, the Netherlands.
2. Nikhef, Amsterdam, the Netherlands. 
3. Institut de Physique, Université de Liège, Belgium. WG1-g2Net 2022



Transient noise in LIGO (glitches)

Example of a blip glitch (left) and a high mass BBH (right) 

2

Examples of glitches.
S. Bahaadini. Inf. Sci. 2018

o Caused by instruments or environment (known or unknown)

o Diminish scientific data available

o Hinder GW detection (mask and/or mimic)

GW masked by glitch (GW170817)



Motivation

o Create an open-source interface for
producing time-domain glitch “waveforms”

o Generate glitches in time domain with GANs

o To use in different applications

3



Data set

The noise will hinder our Machine Learning algorithm.
Can we separate the glitch from the noise?

We focus on blips
from L1 and H1, O2

[30, 250] Hz 

Example of a blip glitch (left) and a high mass BBH (right) 

Simple morphology
and abundant

Similar to other GWs

4



Pre-processing

5

Gravity Spy
(selection)

BayesWaves
(reconstruction)

rROF
(denoising)

GAN input
Gravity Spy

(re-evaluation)



Generative Adversarial Networks

o Used to learn the underlying distribution of the data

o Inspired by Game Theory: game with 2 networks

o Use Wasserstein loss: discriminator till optimality

o Very unstable process

o Penalize the network to stabilize it

Network employed: CT-GAN (Wei, ICLR 2018)

Discriminator

C
ritic

6

D
iscrim

inator
loss



CT-GAN: GP + CT with Dropout
Some intuition from the experiments:

o Gradient Penalty (GP): balances the loss of the 
discriminator and generator

o Consistency term (CT): regularizes the 
generator.

o Dropout: regularizes the discriminator.

Both terms tend to zero when the network is 
stable. 

7



Building a fake 
population of 
blips

CT-GAN learnt to generate reliable 
blips but also anomalies, since our 
real data set is not perfect.

8

Simulated glitches in real whitened noise from H1. (Top) timeseries representation. (Bottom) Q-scan representation.



Metrics to avoid misgenerations
Define metric 𝑚
𝑚 𝑏! , 𝑏" := similarity between two signals 𝑏! and 𝑏" .

𝑚 𝐵, 𝑏" :=𝜇(𝑀") ± 𝜀(𝑀") where 𝑀" := {𝑚 𝑏! , 𝑏" ∀ 𝑏!∈ 𝐵}

Wasserstein distance (W1): or Earth’s mover distance estimator computes similarities between two distributions.

Match function (𝑀#): inner product between two normalized signals maximized over time 𝑡 and phase 𝜙.

Normalized cross-covariance (𝑘): assuming two random processes X and Y,

where

9



Hypothesis description

10

Assumption: CT-GAN learnt the underlying population except certain anomalies

o If bj is reliable blip, it will represent both real and fake populations à 𝑚 𝐵$%&' , 𝑏" ≈ 𝑚 𝐵#&(% , 𝑏" ≈ 1.0
o If bj is anomalous blip, it will not represent both real and fake populations à 𝑚 𝐵$%&' , 𝑏" ≈ 𝑚 𝐵#&(% , 𝑏" ≈ 0

Hypothesis: 𝑚 𝐵$%&' , 𝑏" and 𝑚 𝐵#&(% , 𝑏" are linearly correlated.



Results



Applications

12

a) Glitch population statistics

b) Glitch template bank

c) Mock data challenges. 

d) New glitch detection

e) Improving glitch classification

12

a) b)

c)

https://arxiv.org/abs/2201.08727



Colouring, resampling and rescaling

13

𝑔) 𝑔*= 𝑖𝑓𝑓𝑡( 𝑃𝑆𝐷 =𝑔))CT-GAN

CT-GAN

CT-GAN

𝑔+( ,- 𝑔.(,-= 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒( 𝑔+(,-)

𝑔/ 𝑔/!"#= 4𝛼0F
#$%&

#$'( G𝑔(𝑓) 0

𝑃𝑆𝐷(𝑓) 𝑑𝑓 = 𝛼0𝑔/

𝑔*,/ + 𝑛* = 𝑠* 𝑠)



Selecting reliable generations

14

Build initial data set (1000 samples) to compute the confidence of the generated glitch

dw : Wasserstein distance
dmm : Mis-match (1- match)
dcc : Cross covariance (1 – k)

Percentile 𝑝 ∈ [0.0, 1.0]
If the generated glitch is in the percentile 
region it is accepted. Otherwise, it is dropped.



A practical 
example with 
gengli

import gengli

g = gengli.glitch_generator('L1')
g_whithened = g.get_glitch()
g_coloured = g.get_glitch(10,

srate = 16384,
psd = 'EinsteinTelescopeP1600143’,
SNR = 10)

15

GitHub repository (work in progress): https://git.ligo.org/melissa.lopez/gengli

Full example: plot_glitch.py

https://git.ligo.org/melissa.lopez/gengli
https://git.ligo.org/melissa.lopez/gengli/-/blob/main/examples/plot_glitch.py


Conclusion and 
future work

o We can generate blip glitches. 

o Generated blips represent the real blip 
population.

o Construct a full pipeline for glitch generation.

o Generalize to other types of glitches.

o Application of artificial data set.

https://arxiv.org/abs/2203.06494

https://dcc.ligo.org/P2200115

16

https://arxiv.org/abs/2203.06494


Thank you for listening!

17

Special thanks to: Chris Messenger, Siddharth Soni, Jess McIver, Marco 
Cavaglia, Alejandro Torres-Forne and Harsh Narola.


