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Transient noise in LIGO (glitches)

Example of a blip glitch (left) and a high mass BBH (right) 
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Examples of glitches.
S. Bahaadini. Inf. Sci. 2018

o Caused by instruments or environment (known or unknown)

o Diminish scientific data available

o Hinder GW detection (mask and/or mimic)

GW masked by glitch (GW170817)



Motivation

o Create an open-source interface for
producing time-domain glitch “waveforms”

o Generate glitches in time domain with GANs

o To use in different applications
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Data set

The noise will hinder our Machine Learning algorithm.
Can we separate the glitch from the noise?

We focus on blips
from L1 and H1, O2

[30, 250] Hz 

Example of a blip glitch (left) and a high mass BBH (right) 

Simple morphology
and abundant

Similar to other GWs
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Pre-processing
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Gravity Spy
(selection)

BayesWaves
(reconstruction)

rROF
(denoising)

GAN input
Gravity Spy

(re-evaluation)



Generative Adversarial Networks

o Used to learn the underlying distribution of the data

o Inspired by Game Theory: game with 2 networks

o Use Wasserstein loss: discriminator till optimality

o Very unstable process

o Penalize the network to stabilize it

Network employed: CT-GAN (Wei, ICLR 2018)

Discriminator

C
ritic
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CT-GAN: GP + CT with Dropout
Some intuition from the experiments:

o Gradient Penalty (GP): balances the loss of the 
discriminator and generator

o Consistency term (CT): regularizes the 
generator.

o Dropout: regularizes the discriminator.

Both terms tend to zero when the network is 
stable. 
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Building a fake 
population of 
blips

CT-GAN learnt to generate reliable 
blips but also anomalies, since our 
real data set is not perfect.
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Simulated glitches in real whitened noise from H1. (Top) timeseries representation. (Bottom) Q-scan representation.



Metrics to avoid misgenerations
Define metric 𝑚
𝑚 𝑏! , 𝑏" := similarity between two signals 𝑏! and 𝑏" .

𝑚 𝐵, 𝑏" :=𝜇(𝑀") ± 𝜀(𝑀") where 𝑀" := {𝑚 𝑏! , 𝑏" ∀ 𝑏!∈ 𝐵}

Wasserstein distance (W1): or Earth’s mover distance estimator computes similarities between two distributions.

Match function (𝑀#): inner product between two normalized signals maximized over time 𝑡 and phase 𝜙.

Normalized cross-covariance (𝑘): assuming two random processes X and Y,

where
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Hypothesis description
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Assumption: CT-GAN learnt the underlying population except certain anomalies

o If bj is reliable blip, it will represent both real and fake populations à 𝑚 𝐵$%&' , 𝑏" ≈ 𝑚 𝐵#&(% , 𝑏" ≈ 1.0
o If bj is anomalous blip, it will not represent both real and fake populations à 𝑚 𝐵$%&' , 𝑏" ≈ 𝑚 𝐵#&(% , 𝑏" ≈ 0

Hypothesis: 𝑚 𝐵$%&' , 𝑏" and 𝑚 𝐵#&(% , 𝑏" are linearly correlated.



Results



Applications
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a) Glitch population statistics

b) Glitch template bank

c) Mock data challenges. 

d) New glitch detection

e) Improving glitch classification
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a) b)

c)

https://arxiv.org/abs/2201.08727



Colouring, resampling and rescaling
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Selecting reliable generations
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Build initial data set (1000 samples) to compute the confidence of the generated glitch

dw : Wasserstein distance
dmm : Mis-match (1- match)
dcc : Cross covariance (1 – k)

Percentile 𝑝 ∈ [0.0, 1.0]
If the generated glitch is in the percentile 
region it is accepted. Otherwise, it is dropped.



A practical 
example with 
gengli

import gengli

g = gengli.glitch_generator('L1')
g_whithened = g.get_glitch()
g_coloured = g.get_glitch(10,

srate = 16384,
psd = 'EinsteinTelescopeP1600143’,
SNR = 10)
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GitHub repository (work in progress): https://git.ligo.org/melissa.lopez/gengli

Full example: plot_glitch.py

https://git.ligo.org/melissa.lopez/gengli
https://git.ligo.org/melissa.lopez/gengli/-/blob/main/examples/plot_glitch.py


Conclusion and 
future work

o We can generate blip glitches. 

o Generated blips represent the real blip 
population.

o Construct a full pipeline for glitch generation.

o Generalize to other types of glitches.

o Application of artificial data set.

https://arxiv.org/abs/2203.06494

https://dcc.ligo.org/P2200115
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https://arxiv.org/abs/2203.06494


Thank you for listening!
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