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State-of-the-art

Second generation ground-based interferometers for gravitational wave detection
(aLIGO, aVirgo) = capable to probe an extremely large volume of space and an
unprecedently large volume of the astrophysical parameter space = a great challenge
for high-performance computing and high-throughput computing!

a key aspect = enabling real-time detection of gravitational wave signals and possibly
their parameter estimation.

In this context = Artificial intelligence - particularly promising to accelerate the search
for gravitational wave signals even in online applications =

H. Gabbard et al., Phys. Rev. Lett. 120 (2018) 141103.
D. George and E.A. Huerta, Phys. Rev. D 97 (2018) 044039.
D. George and E.A. Huerta, Phys. Lett. B 778 (2018) 64.
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Our framework: basic idea

- the application of existing CNN algorithms in GW interferometers is made
particularly challenging by the continuous nature of the stream of data.

Our novel framework = inspired by speech processing techniques (short term analysis)
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- key aspects and novelties:

1) particularly suitable for continuous analysis;

2) layered approach;

3) high-modularity;

4) low computational complexity = ideal for real-time applications.
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Our framework: basic idea
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Our framework: zero-level trigger

Level-zero trigger: triggers the next levels; extremely low computational complexity.
- based on the predictions of the ground model.
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Our framework: ground model derivation

Ground model derivation

— using machine learning (supervised learning) methods to derive a model to
link patterns (each pattern is a miniframe in which the stream is subdivided,
suitably represented through some features) to an output (which is close to
“0” if the miniframe does not contain a GW or close to “1” if a GW is
present).

noisgomy Dataset containing examples with 2
sample possible labels:
0 = noise only sample
1 1 - signal + noise

noise-prevailing
GW transient sample
at different SNRs
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Our framework: ground model derivation

Simulation of a Binary Black Hole merger (inspiral+merger+ring down) via state-of-the-
art simulation tools (IMRPhenomD-type waveform is adopted).
- key parameters:

- m, (from 5 to 100 solar masses);

- m,<m,, m;+m,<100 solar masses;

- m, and m, follow the canonical logarithmic mass distribution from B.P. Abbott et al.,
Phys. Rev. X 6 (2016) 041015;

- inclination angle is generated randomly according to a sin distribution;

- phase generated randomly according to a uniform distribution;

- polarisation angle is generated randomly according to a uniform distribution;

- a random sky location is considered (uniformly on the sphere).
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Our framework: ground model derivation

Figure 1: Updated estimate of the Advanced LIGO design curve.
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Our framework: ground model derivation
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vector of speech processing features
peechp d ground

model
analytical model output

und model derivation

features from speech processing (1840 features)

BOB library
- MFCC
LFCC
RFCC
SCFC
- Ne%e
python speech features
MFCC
logfbank library
pyAudioAnalysis
https.//github.com/tyiannak/pyAudioAnalysis/wiki/3.-Feature-Extraction
essentia library

# 0 -> lowLevel.barkbands (vector)
# 5 -> mfcc (vector)
} } 4 } } | | # 12 -> spectral_complexity
. # 15 -> spectral_energy
y15 yis y];! yia ylg First layer # 16 -> spectral_energyband_low
# 17 -> spectral_energyband_middle_low
# 18 -> spectral_energyband_middle_high
interpretation # 19 -> spectral_energyband_high
model # 20 -> spectral_flatness_db
# 21 -> spectral_flux
# 22 -> spectral_rms

pFEdiCtiOﬁ # 23 -> spectral_rolloff
0 for noise-only segment, 1 For GW positive segment # 24 -> spectral_strongpeak
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Brain Project
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A parallel and distributed tool for the formal modeling of
data based on neuro-genetic programming
A

IVersli

Un

Y. = —0.07133 + 0.86274 - pyAAs; - exp [min (0.036685, db17...3) — 1.0623 - db17,ces + ¢ | + 70.47328 - pyAAsg
¢ = max (0.22473 + In (db17..43) - (db32pb4) — 2.6911 - pyAAay, db17..c3)

the following 4 features have been selected:

formal model of
data to be used as

where

the C/GSS/fiCOtiOI’) pyAAs; The second last element of the chroma vector® given by the pyAA library.

B pyAAas The standard deviation of the 12 elements of the chroma vector given by the pyAA library.
f unction f or eaCh dbl7ccen The energy of the waveform in band ]150,800] Hz given by Essentia library on the dbl7 pre-processed waveform.
min i-fra me db32pp4 The energy of the waveform in band ]200,300] Hz given by Essentia library on the db32 pre-processed waveform.

# The chroma vector is a 12-element representation of the spectral energy, where the bins represent the 12 equal-tempered pitch classes
of music (in the western-type semitone spacing).

niele Del




framework: interpretation of ground model output

Ground model interpretation
- thresholded and unthresholded models.
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framework: interpretation of ground model output

Ground model interpretation
- thresholded and unthresholded models.
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sensitivity = fraction of GW
samples correctly identified as
GW.

specificity = fraction of noise
samples correctly identified as
noise.
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amework: interpretation of ground model output

Ground model interpretation
— uthresholded model = multi-modeling.

Y = tanh {1.83 -max [ e;, max(cz,bq) ]
where ¢; = 1.829 - by - max { 1.829 - by - tan(bs), 1.732176 - by - sin[max(tan(bs), by )] + 0.947062 - bg} + bo

and ez = {1.829 . sinh[erf(bs - b1)] - erfltan(ba)] - bs } + b2
the following features have been selected:
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Comparison with the literature

Comparison with CNNs and matched filtering.
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