Validation of Speech Processing Techniques for Real-Time Detection of Gravitational Waves

Francesco P. Barone³, Marco Russo^{3,4}, <u>Daniele Dell'Aquila^{1,2}</u>

¹Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Sassari, Italy
²INFN-Laboratori Nazionali del Sud, Catania, Italy
³Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania, Italy
⁴INFN-Sezione di Catania, Catania, Italy

ddellaquila@uniss.it

Daniele Dell'Aquila (ddellaquila@uniss.it) – April, 11th 2022

Second generation ground-based interferometers for gravitational wave detection (aLIGO, aVirgo) \rightarrow capable to probe an extremely large volume of space and an unprecedently large volume of the astrophysical parameter space \rightarrow a great challenge for high-performance computing and high-throughput computing!

a key aspect \rightarrow enabling *real-time* detection of gravitational wave signals and possibly their parameter estimation.

In this context \rightarrow Artificial intelligence \rightarrow particularly promising to accelerate the search for gravitational wave signals even in online applications \rightarrow

H. Gabbard et al., Phys. Rev. Lett. 120 (2018) 141103.

D. George and E.A. Huerta, Phys. Rev. D 97 (2018) 044039.

D. George and E.A. Huerta, Phys. Lett. B 778 (2018) 64.

 \rightarrow the application of existing CNN algorithms in GW interferometers is made particularly challenging by the continuous nature of the stream of data.

Our novel framework → inspired by *speech processing* techniques (short term analysis)

- \rightarrow key aspects and novelties:
- 1) particularly suitable for continuous analysis;
- 2) layered approach;

& INFN-LNS

Sassari

Università degli Studi di

- 3) high-modularity;
- 4) low computational complexity \rightarrow ideal for real-time applications.

level 0 trigger level 1 trigger (...)

Level-zero trigger: triggers the next levels; extremely low computational complexity. \rightarrow based on the predictions of the *ground model*.

Ground model derivation

 \rightarrow using machine learning (supervised learning) methods to derive a model to link patterns (each pattern is a miniframe in which the stream is subdivided, suitably represented through some *features*) to an output (which is close to "0" if the miniframe does not contain a GW or close to "1" if a GW is present).

O

noise-prevailing GW transient sample at different SNRs

Dataset containing examples with 2 possible labels: $0 \rightarrow$ noise only sample

 $1 \rightarrow signal + noise$

Simulation of a *Binary Black Hole merger* (inspiral+merger+ring down) via state-of-theart simulation tools (IMRPhenomD-type waveform is adopted).

\rightarrow key parameters:

- m₁ (from 5 to 100 solar masses);
- m₂<m₁, m₁+m₂<100 solar masses;

- m₁ and m₂ follow the canonical logarithmic mass distribution from *B.P. Abbott et al., Phys. Rev. X* **6** (2016) 041015;

- inclination angle is generated randomly according to a sin distribution;
- phase generated randomly according to a uniform distribution;
- polarisation angle is generated randomly according to a uniform distribution;
- a random sky location is considered (uniformly on the sphere).

LIGO Document T1800044-v5

Figure 1: Updated estimate of the Advanced LIGO design curve.

Daniele Dell'Aquila (ddellaquila@uniss.it) – April, 11th 2022

Daniele Dell'Aquila (ddellaquila@uniss.it) – April, 11th 2022

Our framework: ground model derivation

10

noise only example

Ground model interpretation

 \rightarrow thresholded and unthresholded models.

noise+signal example

Ground model interpretation

 \rightarrow thresholded and unthresholded models.

Università degli Studi di Sassari & INFN-LNS

sensitivity = fraction of GW samples correctly identified as GW.

specificity = fraction of noise
samples correctly identified as
noise.

10⁰

Ground model interpretation

 \rightarrow uthresholded model \rightarrow multi-modeling.

Comparison with CNNs and matched filtering.

