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Time-Frequency Signal Representation

01 02Signal decomposition into the 
elementary components well 
localized in time and frequency (STFT)

Linear time-frequency distributions

Time-frequency distributions (TFDs) 
(Cohen’s class)

Quadratic time-frequency distributions

Signal representation in the joint 
time-frequency domain:
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Spectrogram

Short-time Fourier transform (STFT):
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Cohen’s Class TFDs

Wigner-Ville distribution (WVD):
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Pseudo Wigner-Ville distribution (PWVD):
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Cohen’s Class TFDs

Smoothed pseudo Wigner-Ville distribution (SPWVD):
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Choi-Williams distribution (CWD):
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Cohen’s Class TFDs

Butterworth distribution (BUD):
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Born-Jordan distribution (BJD):
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Cohen’s Class TFDs

Zhao-Atlas-Marks distribution (ZAMD):
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Reduced-interference distribution with a kernel based on the Bessel function (RIDB):
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Cohen’s Class TFDs

Reduced-interference distribution with a kernel based on the binomial 
coefficients (RIDBN):

𝑅𝐼𝐷𝐵𝑁𝑠 𝑡, 𝑓 =
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Reduced-interference distribution with a kernel based on the Hanning
window (RIDH):
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Cohen’s Class TFDs

Reduced-interference distribution with a kernel based on the 
triangular window (RIDT):
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Deep Learning



Convolutional Neural Networks (CNNs)
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Research Objectives
and Hypotheses



Research Objectives and Hypotheses

High-performance detection of BBH GW 
signals in intensive noise

Better-structured information→
higher classification performances 
than utilizing only the original noisy 
time-series signals

Method for detecting BBH GW signals in 
intensive noise
(TFDs from Cohen’s class + deep learning)
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Proposed Method 
for Detecting GW 
Signals



Detection Procedure
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Data Generation

Collecting LIGO 
detector
recordings

Simulations of GW 
waveforms

Data preprocessing Time-series data
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Time-Series Data

Noise
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Time-Series Data

Data example containing GW 
signal in the noise (NOMF-
SNR = 8 dB, OMF-SNR = 6.55
dB)
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Time-Series Data

Data example containing GW 
signal in the noise (NOMF-
SNR = 19 dB, OMF-SNR = 
14.92 dB)
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Time-Series Data

Data example containing GW 
signal in the noise (NOMF-
SNR = 30 dB, OMF-SNR = 
25.82 dB)
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TFD Calculation

TFDs of the time-series data 
example containing only noise: 
(a) BJD; (b) BUD; (c) CWD; (d) 
PWVD; (e) RIDB; (f) RIDBN; (g) 
RIDH; (h) RIDT; (i) SP; (j) 
SPWVD; (k) WVD; (l) ZAMD. 
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TFD Calculation

TFDs of the time-series data 
example containing the GW 
signal in the noise (NOMF-SNR 
= 8 dB, OMF-SNR = 6.55 dB): 
(a) BJD; (b) BUD; (c) CWD; (d) 
PWVD; (e) RIDB; (f) RIDBN; (g) 
RIDH; (h) RIDT; (i) SP; (j) 
SPWVD; (k) WVD; (l) ZAMD. 
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TFD Calculation

TFDs of the time-series data 
example containing the GW 
signal in the noise (NOMF-SNR 
= 19 dB, OMF-SNR = 14.92 dB): 
(a) BJD; (b) BUD; (c) CWD; (d) 
PWVD; (e) RIDB; (f) RIDBN; (g) 
RIDH; (h) RIDT; (i) SP; (j) 
SPWVD; (k) WVD; (l) ZAMD. 
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TFD Calculation

TFDs of the time-series data 
example containing the GW 
signal in the noise (NOMF-SNR 
= 30 dB, OMF-SNR = 25.82 dB): 
(a) BJD; (b) BUD; (c) CWD; (d) 
PWVD; (e) RIDB; (f) RIDBN; (g) 
RIDH; (h) RIDT; (i) SP; (j) 
SPWVD; (k) WVD; (l) ZAMD. 
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Deep Learning Classification

Input data Deep CNN models

Podatci u vremenskoj domeni
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ResNet-101

Residual (shortcut) connections

Deep CNN architectures
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Xception

Depthwise separable convolutions

Residual connections
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EfficientNet

Compound scaling

Mobile inverted 
bottleneck convolution 
(MBConv) block

Squeeze-and-excitation 
optimization
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Baseline Model
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*D. George and E. Huerta, “Deep learning for real-time 
gravitational wave detection and parameter
estimation: Results with Advanced LIGO data,” Physics
Letters B, vol. 778, pp. 64–70, Mar. 2018.



Results



Accuracy & ROC AUC

Accuracy

• 96.540% (WVD – ResNet-101) → 97.100% (SP – EfficientNet)
• 3.393% → 3.953%

ROC AUC

• 0.98505 (RIDT – EfficientNet) → 0.98854 (CWD – EfficientNet)
• 1.718% → 2.067%
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Recall & Precision

Recall

• 94.147% (CWD – Xception) → 95.867% (ZAMD – Xception)
• 5.294% → 7.014%

Precision

• 97.549% (ZAMD – EfficientNet) → 99.507% (CWD – Xception)
• 0.349% → 2.307%
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F1 score & PR AUC

F1 score

• 96.459% (WVD – ResNet-101) → 97.029% (SP – EfficientNet)
• 3.620% → 4.190%

PR AUC

• 0.98989 (RIDT – EfficientNet) → 0.99195 (CWD – EfficientNet)
• 1.269% → 1.475%
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Confusion Matrices

(a) (b)

(c) (d)

(a) Baseline model; (b) CWD 
– ResNet-101; (c) WVD –
Xception; (d) SP –
EfficientNet.
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ROC Curves

(a) (b)

(c) (d)

(a) Baseline model; (b) CWD 
– ResNet-101; (c) WVD –
Xception; (d) SP –
EfficientNet.
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PR Curves

(a) (b)

(c) (d)

(a) Baseline model; (b) CWD 
– ResNet-101; (c) WVD –
Xception; (d) SP –
EfficientNet.
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Conclusions and
Future Work



Conclusions and Future Work  

Detection of BBH GW signals

Very high classification performances

Deep CNNs + TFDs from Cohen’s class

Better classification performance 
than the model based on time-series 
GW signals

Novel modification of Cohen’s class 
TFD

Data-driven, locally adaptive 
denoising technique
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