CNN for early alert: Going down in frequency

Grégory Baltus¹ J. Janquart^{2,3}, M. Lopez^{2,3}, H. B. Narola^{2,3}, J.R. Cudell¹

Nik hef

Goals and motivations

Goal : Detect the early inspiral phase of a BNS with convolutional neural network (CNN)

Motivation:

Multi-messenger astronomy early alert system

Why deep learning ?

- Computationally cheap after the training
- Fast data frames analysis
- Does not require a template bank during the search

Building on previous work

Proof of concept:

CNN to classify between noise and noise + early inspiral

Observable time window

Which inspiral duration to choose?

Problem : the length of the signal depends on the masses !

Solution : Multiples categories of BNS

Object	light BNS	intermediate BNS	heavy BNS
$\mathcal{M}_c (M_{\odot})$	1.21 - 1.56	1.56 - 2.09	2.09 - 2.61
$m_1 = m_2$ mass range (M_{\odot})	1.4 - 1.8	1.8 - 2.4	2.4 - 3
f_{low} (Hz)	20	20	20
Duration (s)	160 - 100	100 - 65	65 - 45
OTW (s)	80	50	30
Fraction of signal	0.5 - 0.8	0.5 - 0.77	0.46 - 0.66
Early alert before merger (s)	80 - 20	50 - 15	35 - 15

Limitations of the previous work

- Three BNS categories depending on masses with one network trained for each category
- Only one intereferometer with optimal sky position
- Colored Gaussian noise from design sensitivity PSD
- Data duration: 30, 50, or 80 s
- Minimum frequency: 20 Hz

Upgrades

- Single CNN for all the BNS's, regardless of the masses
- One network taking into account the three detectors (H1, L1, V1)
- BNS's uniformly distributed in the sky
- Fixed input duration of 300 s
- Minimum frequency of 10 Hz

Three different types of noise

- Gaussian O3 noise: coming from pycbc
- Real O3 noise: channel: H1:GDS-CALIB_STRAIN frame type: H1_Ilhoft
- Real O4 noise: coming from MDC

Going down in frequency

Training with a uniform distribution of maximum frequency leads to bad performance when the maximum frequency starts to decrease \rightarrow To overcome this problem: Curriculum learning on the frequency

Training details

For each type of noise the training parameters were similar

Curriculum learning data set:

Data set	Max Freq	Min Freq	Min TBM	Max TBM
Data set 1	$40~\mathrm{Hz}$	$10 \mathrm{~Hz}$	$7 \mathrm{s}$	44 s
Data set 2	$35~\mathrm{Hz}$	$10 \mathrm{~Hz}$	$10 \mathrm{~s}$	$63 \mathrm{s}$
Data set 3	$30 \mathrm{~Hz}$	$10 \mathrm{~Hz}$	$15 \mathrm{s}$	$95 \mathrm{s}$
Data set 4	$25~\mathrm{Hz}$	$10 { m ~Hz}$	$24 \mathrm{s}$	$115 \mathrm{\ s}$
Data set 5	$20 \mathrm{~Hz}$	$10 \mathrm{~Hz}$	$45 \mathrm{s}$	$280 \mathrm{~s}$

Number of sample in each data set :

- 16000 for training
- 4000 for validation
- 4400 for testing

* TBM = Time Before Merger

For Real O3 noise: training on O3a and testing on O3b

Results for O3 Gaussian noise

Efficiency of the network

- For high max frequency, all the results are similar
- For a maximum frequency of 20 Hz, results degrade → Peak in the PSD
- FAP fixed at 1%
- PISNR = Partial Inspiral Signal to Noise Ratio

The limitation is not the network but the PSD (peak at 20 Hz)

Comparison between different noise types

• The performances for the three noise types are similar.

• For real noise, the performance are slightly worse. This could be an effect of the non-Gaussianities in the noise

Time before merger: Sliding the network

Comparison between different noise types : TBM

Realistic O4 population

Simulation of a population of BNS for 5 years. We injected them into O4 noise and run our pipeline.

Next steps

• FAP still relatively high.

 \rightarrow To reduce it we can train a CNN for each detector, and use consistency between triggers

- Test our method on the MDC
- Investigate architecture of full convolution with more complex output
- Produce a sky location map with the detected early inspiral \rightarrow Adapt the method of A. Kolmus: arXiv:2111.00833

Conclusion

- CNN for the detection of early inspiral of BNS
- Build on our previous work: only one network, three detectors, 300 seconds input, going down in frequency
- Able to perform almost as well in real noise than in Gaussian noise
- Expected to detect some BNS in O4
- Can detect some BNS more than 1 minute before the merger
- Continue to investigate how to upgrade it

DCC of the paper: LIGO-P2200119