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S3rief Intro

We are interested in
CBC signals anad ol SW170104
estimating their

parameters e time observable by LIGO

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars

O(100) signals in total,

more expected from
O4.
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https://ui.adsabs.harvard.edu/abs/2016PhRvD..93b4013S/abstract

Vitamin

Variational Inference
(tamin)

Uses:

Conditional
Variational

Auto

Encoders (CVAE)

Bayesian parameter estimation using conditional
variational autoencoders for gravitational-wave
astronomy

Hunter Gabbard ©'%, Chris Messenger©®/, Ik Siong Heng', Francesco Tonolini? and
Roderick Murray-Smith©?2

With the improving sensitivity of the global network of gravitational-wave detectors, we expect to observe hundreds of tran-
sient gravitational-wave events per year. The current methods used to estimate their source parameters employ optimally
sensitive but computationally costly Bayesian inference approaches, where typical analyses have taken between 6 h and 6d.
For binary neutron star and neutron star-black hole systems prompt counterpart electromagnetic signatures are expected on
timescales between 1s and 1min. However, the current fastest method for alerting electromagnetic follow-up observers can
provide estimates in of the order of 1min on a limited range of key source parameters. Here, we show that a conditional varia-
tional autoencoder pretrained on binary black hole signals can return Bayesian posterior probability estimates. The training
procedure need only be performed once for a given prior parameter space and the resulting trained machine can then generate
samples describing the posterior distribution around six orders of magnitude faster than existing techniques.

https://www.nature.com/articles/s41567-021-01425-7

Initially developed by
Hunter Gabbard, Chris
Messenger and others.



https://www.nature.com/articles/s41567-021-01425-7
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Defining our model

We observe this — GW data y
Which has some e GW parameters X
Which should come from — ——jp Prior p(x)
We want to estimate this ——m Posterior px|y)
Using this S — s Target distribution Vg(x | y)

Want to find minimum entropy lbetween posterior and output of
network.

H(p,r) = Jp(x | Wlog ry(x | y)dx



Rewrite target distribution

rgx | y) = |1y (2| WIrg (x| 2, y)dz

J

Introduce recognition function

q§b(z ‘ X, y)

With some rearranging
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Training

Generate 1e/ training
examples with parameters
drawn from prior distribution

Augmented on

DL? tca , 59 llja ¢

Run on 3 detectors at 1024
Hz for 1s.
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Training

Training takes around 1 day
on a single GPU

Although realistically need to
train for a bit longer.

Red line Is expected
minimum loss.

Can calculate the
expectation value of
crossentropy from Dynesty
samples.

Losses

10 1

|
—— Total loss

——— Lloss

—— KL loss
Total val loss
L val loss
KL val loss

Epochs

10



Vitamin
posteriors

Dynesty (blue
Vitamin (red

Takes less than
a second to
generate
posteriors
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Can test the statistical
consistency of
posteriors.

Test over the marginal
posteriors.

Fraction of events within the credible interval
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Comparison of JS divergence between different samplers
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Summary

- Currently a problem of speed in PE for CBC signals.

- Use Vitamin to generate Bayesian posteriors for BBH
signals in less than a second.

- Demonstrated to perform similarly to traditional samplers.
+ Currently testing on real data.

+ Plan to extend to BNS signals in the future
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