	Alberto less	12 April 2022
	Core-Collapse Supernovae Detec And Classification In Real Noise With LSTM	ction CNN And
	Working Group 1 Meeting	Valencia, Spain
SCUOLA NORMALE SUPERIORE		

GWs are a solution of the Einstein Field Equation:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$$

Perturbation of the flat background metric:

$$g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}$$
 ; $|h_{\mu
u}| \ll 1$

Image credit: NASA Goddard Space Flight Center

Virgo logbook entry elog40306

- O1-O2 events in GWTC-1 (Abbott et al 2019).
- O3a events in GWTC-2 (Abbott et al 2021).

Public DCC images, LIGO-Virgo Collaboration

The usual approach in GW data analysis for extraction of a signal from a signal+noise data-stream s(t) = n(t) + n(t)h(t) is to implement **matched filtering** (see Allen et al 2012, Abbott et al. 2016):

 $\langle h|h\rangle = 4 \int_0^\infty \frac{\tilde{h}(f)\tilde{h}^*(f)}{S_n(f)} df$

Template Normalization

- Large template bank to cover the parameter ٠ space $(M_c, \phi_c, t_c, \iota, D, \theta, \varphi)$.
- Requires perfect modeling of phase evolution ٠ of the signal.
- Optimal for stationary gaussian background. ٠
- Computationally expensive. ٠

- Final evolutionary stages of massive stars, ($\geq 8 9 M_{\odot}$), after nuclear burning accumulates iron core mass greater than Chandrasekhar mass limit.
- Multi-messenger emission, 99% energy in neutrinos.
- Rare, optimistically (~50÷100 yrs in Milky Way).
- Prompt neutrino emission at ~10MeV.
- Weak prompt GW signals, expected less than 0.0001% supernova energy, h.
- Late EM emission.

GWs FROM CORE-COLLAPSE SUPERNOVAE

- Waveform depends on progenitor star.
- Different emission mechanisms.
- Largely Stochastic.
- Broadband emission.
- Best waveform models from computationally expensive 3D simulations.

Matched filter not feasible!

Potential explosion mechanism GW emission MHD mechanism Neutrino mechanism Acoustic mechanism (rapid rotation) (slow/no rotation) Process (slow/no rotation) Strong None/weak None/weak Rotating collapse and Bounce **3D** rotational None Strong None instabilities Weak Convection None/weak Weak & SASI PNS g-modes None/weak None/weak Strong

Ott et al. (2017)

less, Cuoco, Morawski, Powell (2020)

WAVELET DETECTION FILTER (WDF) (Cuoco et al. 2001, 2018)

- Python Library for Signal Processing and Transient Detection based on wavelet transform.
- Dockers implementation for lightweight use on any platform, including HPC clusters.
- Website: <u>https://wdfpipe.gitlab.io</u>
- ReadTheDocs: https://wdf.readthedocs.io/en/latest

CONVOLUTIONAL NEURAL NETWORKS

	_					
0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

0

-1

0

114		

Spectrogram images

LONG SHORT TERM MEMORY NETWORKS

PROS

- Keeps track of dependencies in time-series with internal loop updating a "state" cell (Hochreiter and Schmidhuber 1997).
- Avoids the Vanishing Gradient problem.

CONS

- Long training times.
- Hyperparameter tuning can be challenging.
- Decreased performances for sequences above O(1000).

LSTM EQUATIONS

$$\begin{split} \tilde{c}_t &= \tanh\left(W_{ch}h_{t-1} + W_{cx}x_t + b_c\right)\\ \Gamma_f &= \sigma\left(W_{fh}h_{t-1} + W_{fx}x_t + b_f\right)\\ \Gamma_u &= \sigma\left(W_{uh}h_{t-1} + W_{ux}x_t + b_u\right)\\ \Gamma_o &= \sigma\left(W_{oh}h_{t-1} + W_{ox}x_t + b_o\right)\\ c_t &= \Gamma_u * \tilde{c}_t + \Gamma_f * c_{t-1}\\ h_t &= \Gamma_o * \tanh\left(c_t\right) \end{split}$$

CORE-COLLAPSE SUPERNOVAE DATASET

(neutrino-driven explosion mechanism)

EUROPEAN COOPERATION

GW INJECTIONS

 $h(t) = F_{+}(\alpha, \delta, \lambda, \beta, \chi, \eta) h_{+}(t) + F_{\times}(\alpha, \delta, \lambda, \beta, \chi, \eta) h_{\times}(t)$

Adhikari 2014

Schutz 2011

LIGO Hanford

LIGO Livingston

Virgo

DATASET CHARACTERISTICS

- 44 segments (4096s per segment) from O2 science run
- CCSN Dataset: ~15000 samples, <u>Fixed distance of 1 kpc</u>.
- Multiple Glitch Families.
- SNR distribution is affected by ITF antenna pattern (and sensitivity).
- Detector noise PSD is non stationary.
- Imbalanced Dataset due to different model amplitudes.

	Triggers		
Detector	Signal	Noise	Total
Virgo V1	9273	47901	57174
Ligo L1	10480	3810	14290
Ligo H1	10984	4103	15087
L1, H1, V1	5647	675	6322

... AFTER WDF WHITENING

COMPARISON OF ML MODEL ACCURACY

(Single interferometer, LIGO H1)

- **<u>Bi-LSTM</u>**, 2 recurrent layers
- ~10 ms/sample
- Best weights over 100 epochs

- <u>1D-CNN</u>, 4 convolutional layers
- ~2 ms/sample
- Best weights over 20 epochs

- <u>2D-CNN</u>, 4 convolutional layers
- ~3 ms/sample
- Best weights over 20 epochs

COMPARISON OF ML MODEL ACCURACY

(Single interferometer, V1,H1,L1)

- **Bi-LSTM**, 2 recurrent layers ٠
- ~10 ms/sample

NORMALI SUPERIOR

Best weights over 100 epochs ٠

- **1D-CNN**, 4 convolutional layers
- ~2 ms/sample
- Best weights over 20 epochs

- **2D-CNN**, 4 convolutional layers
- ~3 ms/sample
- Best weights over 20 epochs

RATE

A. less Core-Collapse Supernovae Detection And Classification In Real Noise With CNN And LSTM

UROPEAN COOPERATION IN SCIENCE & TECHNOLOGY

abe

Glitch

Powell_s18p

þ

CLASSIFICATION WITH 3 ITF INPUT

- Dataset breakdown (ONLY triple coincident triggers): 675 noise, 329 s18p, 491 s18np, 115 he3.5, 1940 m39, 1139 y20, 76 s13, 1557 s25.
- Input to NNs have additional dimension (ITF)

less, Cuoco, Morawski, Nicolaou, Lahav 2021 (accepted)

A. less Core-Collapse Supernovae Detection And Classification In Real Noise With CNN And LSTM

SIMULATED NOISE, SINGLE ITF (less et al. 2020)

EUROPEAN COOPERATION

SCUOLA NORMALE SUPERIORE