Deep Residual Error and Bag-of-Tricks Learning for Gravitational Wave Surrogate Modeling

Styliani-Christina Fragkouli¹ Paraskevi Nousi¹ Nikolaos Passalis¹ Panagiotis Iosif² Nikolaos Stergioulas² Anastasios Tefas¹

¹Department of Informatics Aristotle University of Thessaloniki

²Department of Physics Aristotle University of Thessaloniki

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Table of Contents

- 1 Reduced Order Modeling
- 2 Baseline Model
- **3** Contribution #1: Bag-of-Tricks
- 4 Contribution #2: Residual Errors Network
- 5 Conclusions
- 6 Appendix

Creating a Surrogate Model

From the work of (Field et al. 2014) the next steps were followed in order to build a surrogate model:

- 1. A training of *N* waveforms was created, using SEOBNRv4 (Non-Precessing, Spinning Black Hole Binary with aligned spins) with PyCBC (Nitz et al. 2021),
 - ${h_i(t; \lambda_i)}_{i=1}^N$ where $\lambda = (q, x_1, x_2)$, $q = \frac{m_1}{m_2}$ is the mass ratio $1 \le q \le 8$, $-1 \le x_1 \le 1$ and $-1 \le x_2 \le 1$ are the spins.
- 2. Using routines from ROMpy (Galley 2020) :
 - Greedy algorithm selects m < N waveforms (and their λ values), which create the reduced basis {e_i}^m_{i=1} for a given tolerance.
 - the Empirical Interpolation (EIM) algorithm finds informative time points (empirical nodes {T_i}^m_{i=1}) that can be used to reconstruct the whole waveform for arbitrary λ.

Creating a Surrogate Model

- 3. A training set of 200k samples and validation and test set (30k samples each) are generated in the same λ interval and the corresponding coefficients are extracted.
- 4. To deal with the interpolation in 3 dimensions, Artificial Neural Networks (ANNs) are implemented to map the 3D input λ to the coefficients from the empirical nodes T_j (Khan and Green 2021).

Implementing Neural Networks

Following (Khan and Green 2021) ,two separate networks are used; one for the amplitude and one for the phase of the waveforms

$$h(t,\lambda) = A(t,\lambda)e^{-i\phi(t,\lambda)}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三国 - のへで

Ground Truth

Greedy	п	п		mismatch ${\cal M}$	
Tolerance	(amplitude)	(phase)	(max)	(median)	(95 th percentile)
10^{-6}	8	4	$8.44 imes10^{-3}$	$5.47 imes10^{-4}$	$1.81 imes10^{-3}$
10^{-8}	13	4	$8.44 imes10^{-3}$	$5.45 imes10^{-4}$	$1.80 imes10^{-3}$
10^{-10}	18	8	$4.95 imes10^{-4}$	$1.30 imes10^{-5}$	$8.22 imes10^{-5}$
10^{-12}	41	12	$2.07 imes10^{-6}$	$7.45 imes10^{-8}$	$2.83 imes10^{-7}$
10^{-14}	84	32	$1.34 imes10^{-8}$	$5.64 imes10^{-10}$	$3.95 imes10^{-9}$
10^{-16}	93	48	$6.60 imes10^{-9}$	$4.59 imes10^{-10}$	$3.02 imes10^{-9}$

Table 1: Number of bases (n) for the amplitude and phase and mismatch \mathcal{M} (shown as maximum, median and 95th percentile values) between waveforms reconstructed via EIM and original waveforms for the validation set. In blue color are the chosen bases to compare our work (Ground Truth)

Baseline Network MSE and Mismatch

	MSE for predictions of training	MSE for predictions of validation		
	(average of 5 runs)	(average of 5 runs)		
Amplitude	$1.79 imes 10^{-7} \pm 3.52 imes 10^{-10}$	$1.84 imes 10^{-7} \pm 3.29 imes 10^{-10}$		
Phase	$1.05 imes 10^{-8} \pm 2.18 imes 10^{-10}$	$1.06 imes 10^{-8} \pm 2.11 imes 10^{-10}$		

Table 2: Training baseline network MSE between predictions and ground truth.

	Mismatch ${\cal M}$		
Min	$2.70 imes 10^{-6} \pm 3.43 imes 10^{-7}$		
Max	$7.73 imes 10^{-3} \pm 5.38 imes 10^{-4}$		
95 th	$2.95 imes 10^{-4} \pm 6.61 imes 10^{-6}$		
Median	$8.39 imes 10^{-5} \pm 1.91 imes 10^{-6}$		

Model Architecture

ANNs Learning Curves

(a) MSE curve for train and validation set of the Amplitude network.

(b) MSE curve for train and validation set of the Phase network.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Mismatch

(a) \mathcal{M} above 95th percentile between waveforms reconstructed via EIM and original waveforms (Ground Truth).

(b) \mathcal{M} above 95th percentile between waveforms reconstructed via ANNs predictions and original waveforms.

- **1** Input with 4 parameters $\boldsymbol{x} = (q, x_1, x_2, \beta)$
- **2** Input Augmentation with log(q) and -log(q)
- **3** Output Augmentation with f(y)
- **4** K-networks (input feature-based dissection)
- **5** Network per coefficient (output-based dissection)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Tricks Violin Mismatch Plots

Residual Errors Network

A second residual neural network for the training network errors

$$\tilde{\boldsymbol{y}} = h(\boldsymbol{x}) + f(\boldsymbol{x})$$

- \tilde{y} : Final ANNs predictions
- $h(x) = \hat{y}$: Predictions from baseline ANN
- $f(x) = \hat{e}$: Predictions from residual error ANN

Baseline Network Mismatch

(a) \mathcal{M} above 95th percentile between waveforms reconstructed via ANNs predictions and original waveforms without residual network.

(b) \mathcal{M} above 95th percentile between waveforms reconstructed via ANNs predictions and original waveforms with residual network.

イロト イヨト イヨト イヨト 二日二

Violin Mismatch Plots

Violin Mismatch Plots

 Physics and learning induced ideas can improve final results
When including a second ANN trained on residual errors, improves final mismatch by more than an order of magnitude.

Thank you for your time!

References I

Cutler, Curt and Eanna E. Flanagan (Mar. 1994). "Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform?" In: *Physical Review D* 49.6, pp. 2658–2697, ISSN: 0556-2821. DOI: 10.1103/physrevd.49.2658. URL: http://dx.doi.org/10.1103/PhysRevD.49.2658. Field, Scott E et al. (2014). "Fast prediction and evaluation of gravitational waveforms using surrogate models". In: *Physical Review X* 4.3, p. 031006. Galley, Chad R. (2020). RomPy package. https://bitbucket.org/chadgalley/rompy/. Khan, Sebastian and Rhys Green (2021). "Gravitational-wave surrogate models powered by artificial neural networks". In: Physical Review D 103.6, p. 064015. Nitz, Alex et al. (May 2021). gwastro/pycbc: PyCBC Release 1.18.1. Version v1.18.1. DOI: 10.5281/zenodo.4849433. URL: https://doi.org/10.5281/zenodo.4849433.

β as extra input

Includes the dependence of the phase inspiral waveforms on spin combinations of q, x_1 and x_2 with same β lead to same waveforms (Cutler and Flanagan 1994)

$$\beta = \left(\frac{113}{12} + \frac{25}{4q}\right) \frac{q^2}{(1+q)^2} x_1 + \left(\frac{113}{12} + \frac{25q}{4}\right) \frac{1}{(1+q)^2} x_2$$

- The new input $\boldsymbol{x} = (q, x_1, x_2, \beta)$ has 4 parameters
- number of training samples and output nodes are similar to the baseline model

Implementation of log(q) and -log(q)

- inserting a new branch leading to 400k training samples
- repeated output: 36 output nodes for the amplitude
- repeated output: 18 output node for the phase
- calculation of the mean of the prediction from the 2 branches

Implementation of K-networks

- input was divided into K=2 (for balanced training samples) according to the value of q
- best results from overlapping range of q (1, 4.2) and (3.8, 8)
- two separate networks were trained in both ranges
- single residual network

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Implementation of f(y) output

- insert a new branch corresponding to a function $f(\mathbf{y})$
- 200k training samples
- amplitude 36 output nodes: 18 from y space and 18 from f(y) space
- phase 16 output nodes: 8 from y space and 8 from f(y) space
- calculation of mean from the two branches