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● In order to identify the nature of the source (NS/BH) and its parameters (masses, spins, distance, …) we need 
accurate waveform models.

○ Synthesized from numerical relativity (NR) catalogs and perturbative results (post-Newtonian, …).

● 3 main approaches, standard code base: LAL, reviewed by LVC

○ “Surrogates” - interpolate waveform catalogs - limited in parameter space coverage

○ Effective one body: model Hamiltonian and radiative flux =>  integrate ODEs => expensive

○ “Phenomenological”: piecewise closed form expressions => fast

● Status: no generic inspiral-merger-ringdown waveforms (spin precession+eccentricity)

○ non-precessing non-eccentric models calibrated to NR - calibration of precessing models to NR still very limited
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Waveform models I

Third generation (IMRPhenomD-based): Simple, 
fast and accurate (for O1) models.
Standard tool for GW data analysis, still employed.

Fourth generation:
thorough improvement in accuracy + HM calibration + 
speed-up algorithms => IMRPhenomXPHM

New time-domain family: Similar techniques and data set as in 
IMRPhenomX* development. 
Aimed to facilitate modelling generic waveforms, e.g. improve high 
mass precessing description, provide alternative handle on tests of 
GR.



● Waveforms are modelled as sums of spherical harmonics

○ Quadrupole modes (2,2) are the dominant modes in GW signals.

○ Subdominant modes are important in the merger and ringdown, close to the 
edge-on and high unequal masses.
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Waveform models II

● IMRPhenom waveform modelling use 
piecewise closed-form expressions for 
WF - key to simplicity and speed - 
compression of WF info.

○ Model the amplitudes and phases of 
the spherical harmonics using typically 
3 different regions: 
inspiral/merger/RD 

Inspiral Inspiral

Intermediate

Intermediate

Ringdow
nRingdow

n

IMRPhenomXAS regimes, Pratten et al., 
2020.



Steps to construct a Phenom model:

1. Design appropriate WF ansatz across the parameter space.

● Combine PN theory, BH perturbation theory and NR.
● Flexibly use insight from analytical results and numerical 

studies of calibration.
● Every point in parameter space is described by small 

number of coefficients. 

2. “Direct” fit: Find the best coefficients for each waveform in the 
calibration data set.

3. Parameter space fit: model coefficients across parameter space.

4. Reconstruction: construct waveform from coefficients - more 
than one way!
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Phenomenological waveform modelling

Hierarchical fits, Jiménez-Forteza et al., 2017.



Non-precessing circular waveforms - model the amplitudes and phases of the 
(spherical or spheroidal) harmonics. In the frequency domain:

in the frequency domain.

Ansätze used: Example of IMPhenomXHM
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Non-prececessing QC sector has been calibrated to NR => very accurate & fastest LAL models in 
the frequency and time domain.



● Idea: precessing waveforms look simpler in a co-precessing frame => describe 
precessing waveform in terms of rotating a waveform in a co-precessing frame.

○ Can use Euler angle or quaternion description:

● Current precessing IMRPhenom models still use an approximation that allows to 
skip calibration to NR:

○ identify co-precessing WF with non-precessing WF.

● Future: calibrate to NR, e.g. single spin or complete double spin parameter space.
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“Twisting” up for precession



Machine Learning: Applications to waveform modeling
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Fit a high dimensional parameter space with phenomenological techniques of waveform modeling is very 
difficult. The usage of ML could facilitate the procedure. 

In this talk we present our current work applying ML techniques to predict the remnant properties of a 
BBH. As training data we use NR simulations from SXS catalog (2016 BBH NR simulations: 593 AS + 1423 
Prec.)

- In the catalog there is information about the time 
evolution of the binary (waveform, spins or orbital 
evolution).

- We can extract this information and create a ML 
model which is able to predict the spin of the final 
object and the radiated energy.

Following the conventions:

- m1 > m2 where for simplicity the total mass of the binary is 
a scaling factor working in units of m1 + m2 = 1.

- χi ∊ [-1,1] and mi ∊ [0,1].
Waveform modes from the non-spinning simulation SXS:BBH:0169, Borhanian et al., 
2020.



Aligned spin (AS) case
Individual spins // orbital angular momentum (⊥ to the orbital 
plane). Spin directions and the orbital plane itself is preserved in 
time.

3D parameter space fully described by:

- The z-component of the individual spins (χ1z and χ2z).
- Either the asymmetric mass ratio (q) following the m1 > m2 

convention, or the symmetric one (η).

Suggested by the post-Newtonian (PN) results and also studies of 
NR calibrated models we use a more convenient parametrization of 
the spins:

- The difference between spins (Δχ =  χ1 - χ2).
- The average spin ⊥ to the orbital plane ( χeff ). 
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Input parameters
η, χeff , Δχ Output parameters

χf , Erad

Motion of two aligned BBHs, Varma et al. 2018.

593 Numerical Relativity simulations (SXS catalog)

Correlation matrix between input and output quantities.



Aligned spin case - model structure
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Radiated Energy
Mean abs. err.: 0.0029 
Max abs. err.: 0.0126
Accuray: 99.7%

● Dropout = 10-4

● Learning rate of the ADAM opt = 10-4

● batch size = 32
● epochs = 300
● Using cross validation (cv=5) - (80% TR - 10% 

VL- 10% TS)

Final spin
Mean abs. err.: 0.0046
Max abs. err.: 0.0259
Accuray: 99.01%

Input Layer (nodes = 3)
η, χeff , Δχ

Dense Layer (nodes = 16) Dense Layer (nodes = 16)
Dropout

Dense Layer (nodes = 8)
Dropout

Output Layer (nodes = 2)
χf , Erad

Mean Absolute Error for the train and validation of AS 
model.

AS model structure
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Aligned spin case - model behaviour
We evaluate the accuracy of the model comparing the results with existing 
models:

- NRHybSur3dq8 (q ≤ 8 and |χi| ≤ 0.8).
- IMRPhenomX*
- SEOBNRv4 

To understand better the behaviour of our model, we divide the parameter 
space in several subspaces reducing dimensionality:

- Equal mass - equal spin data (1D, χeff dependence)       η = 0.25, Δχ = 0 
- Non-spinning data (1D, η dependence)       χeff = Δχ = 0 
- Equal spin data (2D, η and χeff dependence)       Δχ = 0

2D equal spin1D equal mass - equal spin

1D non-spinning
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Our dataset has a good coverage of this subset (67 sim.), but we need 
better interpolation in large regimes.
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mass ratios. Extrapolation is really 
bad, we need more data 
(analytical solution).
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Aligned spin case - model behaviour
We evaluate the accuracy of the model comparing the results with existing 
models:

- NRHybSur3dq8 (q ≤ 8 and |χi| ≤ 0.8).
- IMRPhenomX*
- SEOBNRv4 

To understand better the behaviour of our model, we divide the parameter 
space in several subspaces reducing dimensionality:

- Equal mass - equal spin data (1D, χeff dependence)       η = 0.25, Δχ = 0 
- Non-spinning data (1D, η dependence)       χeff = Δχ = 0 
- Equal spin data (2D, η and χeff dependence)       Δχ = 0

2D equal spin1D equal mass - equal spin

1D non-spinning

Our dataset has a good coverage of this subset (67 sim.), but we need 
better interpolation in large regimes.

Our subset (116 sim.) has not 
good coverage in extreme mass 
ratio. Extrapolation is really bad, 
we need more data (analytical 
solution).

Also lack of information in the extreme 
mass ratio regime. Subset of 191 sim.



Extreme mass ratio approximation (EMRIs) - AS
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- In the extreme mass ratio limit (η      0) we have a test particle orbiting a Kerr BH.
- The small BH plunges after reaching the ISCO and in linear order with the asymmetric mass ratio we have that  Erad = EISCO 

and Mf = 1 - EISCO .
- Energy and orbital angular momentum are described as:

- We can obtain the final spin solving a numerical equation given by:

- In the boundary of this regime, we have a Kerr BH. It’s final spin has to be equal or smaller than 1. And its derivative in the 
boundary has to be zero.

0
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Aligned spin case - NR data + EMRI approx. (preliminar results)

2D equal spin

We add to our SXS dataset, 300 EMRI points 
between η ∈ (10-5,10-3) and χ ∈ (-1,1).
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2D equal spin

Adding EMRI data corrects a bit the behaviour in 
large q regime. It’s a toy model - need further 
exploration.

Aligned spin case - NR data + EMRI approx. (preliminar results)

We add to our SXS dataset, 300 EMRI points 
between η ∈ (10-5,10-3) and χ ∈ (-1,1).
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2D equal spin

Adding EMRI data corrects a bit the behaviour in 
large q regime. It’s a toy model - need further 
exploration.

Here we win in interpolation between large regimes 
but we lose accuracy in Erad for large Seff.

Aligned spin case - NR data + EMRI approx. (preliminar results)

We add to our SXS dataset, 300 EMRI points 
between η ∈ (10-5,10-3) and χ ∈ (-1,1).
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2D equal spin

Adding EMRI data corrects a bit the behaviour in 
large q regime. It’s a toy model - need further 
exploration.

Here we win in interpolation between large regimes 
but we lose accuracy in Erad for large Seff.

The slope in extreme mass ratio has disappeared.

Aligned spin case - NR data + EMRI approx. (preliminar results)

We add to our SXS dataset, 300 EMRI points 
between η ∈ (10-5,10-3) and χ ∈ (-1,1).
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Aligned spin case - Extreme spins

The extremal aligned spins regime (χ1 = χ2 = 1), is very 
challenging. Any NR catalog covers it.

Different ansatz constructions, especially in the EMRI 
regime, produce discrepancies.  One has to take into 
account that the final state is a Kerr BH (χf ≤ 1). We expect 
that in χeff = 1, the final spin decreases monotonically with 
increasing η:

The IMRPhenomX family fits do not violate the Kerr bound in the extreme-spin 
limit at low η. The NRSur family does not cover the region q > 8.

Having models which cover the whole parameter space (PS) is needed.  High 
SNR events need very accurate models covering  all the PS and extrapolation is 
not a good choice.

Representation of the final spin for the extreme spins subset.

Comparison of different models in the limit of extremal aligned spins.
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Aligned spin case - Extreme spins

The extremal aligned spins regime (χ1 = χ2 = 1), is very 
challenging. Any NR catalog covers it.

Different ansatz constructions, especially in the EMRI 
regime, produce discrepancies.  One has to take into 
account that the final state is a Kerr BH (χf ≤ 1). We expect 
that in χeff = 1, the final spin decreases monotonically with 
increasing η:

The IMRPhenomX family fits do not violate the Kerr bound in the extreme-spin 
limit at low η. The NRSur family does not cover the region q > 8.

Having models which cover the whole parameter space (PS) is needed.  High 
SNR events need very accurate models covering  all the PS and extrapolation is 
not a good choice.

Representation of the final spin for the extreme spins subset.

Comparison of different models in the limit of extremal aligned spins.

Need more information. Very 
bad in extrapolation.



Precessing spin case
One or both spins not // to the orbital angular momentum. The 
orbital plane is not preserved - temporal dependence.

7D parameter space fully described by:

- The components of the individual spins (χ1x,χ1y,χ1z and χ2x,
χ2y, χ2z ).

- Either the asymmetric mass ratio (q) following the m1 > m2 
convention, or the symmetric one (η).

One can add extra parameters to the training giving information 
about the spin angles (zenith angle between the spin and orbital 
momenta, Ө1,2 and the planar spin projection angle difference, Φ12).
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Input parameters 
η, χ1x,χ1y,χ1z, χ2x,

χ2y, χ2z , Φ12,Ө1,Ө2

Output parameters
χfx,χfy,χfz ,Erad

1423 Numerical Relativity simulations (SXS catalog)

Motion of two precessing BBHs, Schmidt et al., 2010.

* PROBLEM: The frame used for AS is not convenient 
any more.

Rotation of all the simulations to the co-orbital frame at 
a tref = tpeak- 100M (non-oscillatory).

Source frame of a precessing binary. Schmidt et al., 2014.



Preparing training data: Precessing
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1. Get the spin evolution for each simulation. 
2. Remove the junk radiation due to NR (first 500 points).
3. Compute the maximum of the total WF amplitude - peak of the WF

 

4. Get the time reference: 100M time before the peak.
5. Coprecessing rotation:

a. Get the position evolution for each simulation.
b. Derive it in order to get the velocity evolution.
c. Compute the angular velocity and normalize it. 

d. Compute the rotation matrix in order to have ω(tref) in the z axis.
6. Coorbital rotation:

a. Compute the rotation matrix in order to have r(tref)  in the x axis.

* Now we can rotate the initial and the final spins for all the simulations and we will have all of them in the same frame.

tpea

k

Source frame of a precessing binary. Schmidt et al., 2014.



Precessing case - Toy model structure
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● Dropout = 10-4

● Learning rate of the ADAM opt = 10-3

● batch size = 32
● epochs = 1000
● Using cross validation (cv=5) - (80% TR - 10% 

VL- 10% TS)

Input Layer (nodes = 10)
η, χ1x,χ1y,χ1z, χ2x,χ2y, 

χ2z , Φ12,Ө1,Ө2

Dense Layer (nodes = 16)
Dropout

Dense Layer (nodes = 16)
Dropout

Dense Layer (nodes = 64)
Dropout

Output Layer (nodes = 4)
χxf ,χyf,χzf, Erad

Dense Layer (nodes = 25)

…

Comparison table of the Root Mean Absolute Errors using different 
models.

Precessing model structure

Mean Absolute Error for the train and validation of precessing 
model.

Model Final mass Final spin

SurfinBH 2.1e-07 4.3e-05

Haegel 8.0e-04 4.0e-03

PhenomX 5.7e-06 3.8e-02

SEOBNRv4 5.0e-06 5.6e-03

Our model 3.3e-06 1.0e-04
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Precessing case - model accuracy

Comparison table of the Root Mean Absolute Errors using different 
models.

Model Final mass Final spin

SurfinBH 2.1e-07 4.3e-05

Haegel 8.0e-04 4.0e-03

PhenomX 5.7e-06 3.8e-02

SEOBNRv4 5.0e-06 5.6e-03

Our model 3.3e-06 1.0e-04

Our precessing model has very good accuracy in both remnant quantities.

- Both SEOB and Phenom models are not very accurate. Our model 
predicts much better the remnant quantities. For the final spin, they 
only predict the norm of the vector, and in our case we predict the 3 
components.

- SurfinBH model has one order of magnitude more accuracy. This 
model used 1528 NR simulations, and we used a few less (1423).
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Precessing case - model accuracy
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Precessing case - model accuracy

Comparison table of the Root Mean Absolute Errors using different 
models.

Model Final mass Final spin

SurfinBH 2.1e-07 4.3e-05

Haegel 8.0e-04 4.0e-03

PhenomX 5.7e-06 3.8e-02

SEOBNRv4 5.0e-06 5.6e-03

Our model 3.3e-06 1.0e-04

Our precessing model has very good accuracy in both remnant quantities.

- Both SEOB and Phenom models are not very accurate. Our model 
predicts much better the remnant quantities. For the final spin, they 
only predict the norm of the vector, and in our case we predict the 3 
components.

- SurfinBH model has one order of magnitude more accuracy. This 
model used 1528 NR simulations, and we used a few less (1423).
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Conclusions

● Constant development and improvement of waveform models is  necessary with the increasing 

sensitivity of the detectors.

● Current models does not cover the whole parameter space (PS) and extrapolation is not accurate.

● For a high dimensional PS (precessing or eccentric), cover it is extremely important. Events with high 

SNR need very accurate models in all the PS.

Future work
● We need to add more data points in our dataset - RIT catalog and UIB NR simulations.

○ Extreme spins and extreme mass ratio

● Gain accuracy in the interpolation of two very separate regions.

● Weight data taking into account the resolution of the simulations and their errors.

● Figure out how to interpret results of the precessing model.
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